1.1 Maximum and Minimum Values.

Definition:

1. (a) A function f has an **absolute maximum** (or **global maximum**) at $x = c$ if $f(c) \geq f(x)$ for all x in D_f.

 The number $f(c)$ is called the **maximum value** of f on D_f.

 (b) f has an **absolute minimum** (or **global minimum**) at $x = c$ if $f(c) \leq f(x)$ for all x in D_f.

 The number $f(c)$ is called the **minimum value** of f on D_f.

 The maximum and minimum values of f are called the **extreme values** of f.

2. (a) A function f has a **local maximum** (or **relative maximum**) at $x = c$ if $f(c) \geq f(x)$ when x is near c (for all x in some open interval containing c).

 The number $f(c)$ is called the **local maximum value** of f.

 (b) f has a **local minimum** (or **relative minimum**) at $x = c$ if $f(c) \leq f(x)$ when x is near c.

 The number $f(c)$ is called the **local minimum value** of f.
The function $f(x)$ has an **absolute maximum** at $x=e$, the absolute maximum value $= f(e)$.

- $f(x)$ has an **absolute minimum** at $x=a$, the absolute minimum value $= f(a)$.
- $f(x)$ has a **local maximum** at $x=c$, the local maximum value $= f(c)$.
- $f(x)$ has a **local maximum** at $x=e$, the local maximum value $= f(e)$.
- $f(x)$ has a **local minimum** at $x=d$, the local minimum value $= f(d)$.
- $f(x)$ has a **local minimum** at $x=b$, the local minimum value $= f(b)$.

The absolute minimum is not a local minimum because it occurs at an endpoint.
1. The function $f(x) = \cos x$ takes on its (local and absolute) maximum value of 1 infinitely many times. It also takes on its (local and absolute) minimum value of -1 infinitely many times.

2. $f(x) = x^2$ has an absolute (and local) minimum value $f(0) = 0$. It has no maximum value.

The Extreme Value Theorem

If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some numbers c and d in $[a, b]$.

![Graphs showing the Extreme Value Theorem](image)
If f is not continuous on the closed interval $[a, b]$, it may not have extreme values. (as shown below)

f has an absolute min. value $= f(b)$, but no maximum value.

This continuous function g has no extreme values.

Def

A critical number of a function f is a number $c \in D_f$ s.t.

- either $f'(c) = 0$
- or $f'(c)$ does not exist.

Ex. If $f(x) = x^3$ then $f'(x) = 3x^2$. $f'(x) = 0 \Leftrightarrow 3x^2 = 0 \Rightarrow x = 0$. \therefore $x = 0$ is a critical number of f.

Ex. $x = 0$ is the critical number of $f(x) = |x|$ since $f'(0)$ does not exist.
Find the critical numbers of \(f(x) = x^{\frac{3}{5}} (4-x) \)

Solution:

\[
f'(x) = \frac{3}{5} x^{-\frac{2}{5}} (4-x) + \frac{3}{5} x^{\frac{3}{5}} = \frac{3(4-x) - 5x}{5x^{\frac{2}{5}}} = \frac{12 - 8x}{5x^{\frac{2}{5}}} \]

\[
f'(x) = 0 \iff 12 - 8x = 0 \iff x = \frac{3}{2} \]

\(f'(0) \) D.N.E \iff \(x = 0 \)

Thus, the critical numbers are \(x = \frac{3}{2} \) and \(x = 0 \).

The critical numbers of \(f \) are \(x = c, x = e, x = l \) (\(f'(x) = 0 \)) and \(x = d \) (\(f'(x) \) D.N.E).

Note that the local max. and min. occur at these points.
Thm

If f has a local max. or min. at $x = C$, then C is a critical number of f.

The theorem asserts that every local max. or min. occur at a critical number.

But, be careful! The converse is false!! That means it may happen that C is a critical number of f, but f has no local max. or min. at $x = C$.

Ex. \[f(x) = x^3. \]

$x = 0$ is a critical number of f since $f'(0) = 0$, but there's no local max. or min. at $x = 0$. $f'(0) = 0$ simply means that the curve $y = x^3$ has a horizontal tangent at $x = 0$.

Ex. \[f(x) = x^{\frac{1}{3}} \]

$x = 0$ is a critical number of f since $f'(0)$ D.N.E. but f has no local max. or min. at $x = 0$. Here, "$f'(0)$ D.N.E." simply means that the curve $y = x^{\frac{1}{3}}$ has a vertical tangent at $x = 0$.
The Closed Interval Method

To find the absolute maximum and minimum values of a continuous function \(f \) on a closed interval \([a,b]\).

1. Find the values of \(f \) at the critical numbers of \(f \) in \((a,b)\).
2. Find the values of \(f \) at the endpoints of the interval.
3. The largest of the values from Steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

Find the absolute maximum and minimum values of the function
\[
f(x) = x^3 - 3x^2 + 1 \quad , \quad -\frac{1}{2} \leq x \leq 4
\]

01] Since \(f \) is continuous on the closed interval \([-\frac{1}{2}, 4]\), we can use the Closed Interval Method

1. \(f'(x) = 3x^2 - 6x = 3x(x-2) \), \(f'(x)=0 \iff x=0 \) or \(x=2 \) ← critical numbers

 \(f(0)=1 \), \(f(2)=-3 \)

2. \(f\left(-\frac{1}{2}\right)=\frac{1}{8} \), \(f(4)=17 \)

3. the absolute maximum value = \(f(4)=17 \)
 the absolute minimum value = \(f(2)=-3 \)
Exercise 7: Find the absolute maximum and minimum values of the function

\[f(x) = x - 2 \sin x \quad , \quad 0 \leq x \leq \pi \]

Sol:
1. \(f'(x) = 1 - 2 \cos x \quad , \quad f'(x) = 0 \iff \cos x = \frac{1}{2} \iff x = \frac{\pi}{3} \) or \(x = \frac{5\pi}{3} \)

 \[f\left(\frac{\pi}{3}\right) = \frac{\pi}{3} - 2 \sin \frac{\pi}{3} = \frac{\pi}{3} - \sqrt{3} < 0 \]

 \[f\left(\frac{5\pi}{3}\right) = \frac{5\pi}{3} - 2 \sin \frac{5\pi}{3} = \frac{5\pi}{3} + \sqrt{3} \approx 6.96 \]

2. \(f(0) = 0 \quad ; \quad f(2\pi) = 2\pi \approx 6.28 \)

3. The absolute maximum = \(f\left(\frac{5\pi}{3}\right) = \frac{5\pi}{3} + \sqrt{3} \)

 The absolute minimum = \(f\left(\frac{\pi}{3}\right) = \frac{\pi}{3} - \sqrt{3} \)

Exercise 8: Find the absolute maximum and minimum of \(f(x) = 16 - 4x \) on \([-3, 3]\)

Sol:
1. \(f'(x) = \begin{cases} -4 \quad , \quad \text{when } x < \frac{3}{2} \\ 4 \quad , \quad \text{when } x > \frac{3}{2} \end{cases} \) and \(f'\left(\frac{3}{2}\right) \) D.N.E. \(\therefore \frac{3}{2} \) is a critical number

 \[f\left(\frac{3}{2}\right) = 0 \]

2. \(f(-3) = 18 \quad , \quad f(3) = 6 \)

3. The absolute maximum = \(f(-3) = 18 \)

 The absolute minimum = \(f\left(\frac{3}{2}\right) = 0 \)

\[\text{Graph of } y = 16 - 4x \]
4.2 The Mean Value Theorem

Rolle's Thm

Let f be a function that satisfies the following three hypothesis:
1. f is continuous on the closed interval $[a, b]$.
2. f is differentiable on the open interval (a, b).
3. $f(a) = f(b)$

Then there is a number c in (a, b) such that $f'(c) = 0$

Proof:
Case I: If $f(x) = k$ (a constant), then $f'(x) = 0 \ \forall x \in (a, b)$ [Fig. (1)]

Case II: If $f(x) > f(a)$ for some $x \in (a, b)$. [Fig. (2) and (3)]
Since f is cont. on a closed interval, by the Extreme Value Theorem, f has a maximum value somewhere in $[a, b]$. Because $f(a) = f(b)$, the max. value must occur at a number c in (a, b).
That is, $f(c)$ is a local max. value. Since f is diff. at c by hypothesis 2, we have $f'(c) = 0$.

Case III: If $f(x) < f(a)$ for some $x \in (a, b)$. [Fig. (4)]
Similarly, f has a min. value in $[a, b]$. Since $f(a) = f(b)$, the min. value must occur at a number c in (a, b). And therefore $f(c)$ is a local min. value.
Again, $f'(c) = 0$ since f is diff. at c.

(1) Let \(s = f(t) \) stand for the position function of a moving object. If the object is in the same place at two different instants \(t = a \) and \(t = b \), then \(f(a) = f(b) \). Rolle's Thm says there is some instant of time \(t = c \) between \(a \) and \(b \) s.t. \(f'(c) = 0 \), that is, the velocity is 0 (i.e. \(v(c) = 0 \)).

(2) Prove that the eq. \(x^3 + x - 1 = 0 \) has exactly one real root.

(a) Let \(f(x) = x^3 + x - 1 \). Then \(f(0) = -1 < 0 \) and \(f(1) = 1 > 0 \).

Since \(f \) is a polynomial, \(f \) is cont. on \([0, 1]\).

By the Intermediate Value Thm, there is a number \(c \in (a, b) \) s.t. \(f(c) = 0 \). Thus, the eq. has a root.

(b) To show that the eq. has exactly one root, we use Rolle's Thm and argue by contradiction.

Suppose that the eq. had two roots \(a \) and \(b \). Then \(f(b) = f(a) = 0 \).

Besides, since \(f \) is a polynomial, it is differentiable on \((a, b)\) and cont. on \([a, b]\).

Thus, by Rolle's Thm, there exists a number \(c \in (a, b) \) s.t. \(f'(c) = 0 \).

But \(f'(x) = 3x^2 + 1 \geq 1 \) for all \(x \). So \(f'(x) \) can never be 0.

This gives a contradiction.

Therefore, the eq. can’t have two real roots. That is, it has exactly one root.
The Mean Value Thm.

Let f be a function that satisfies the following hypotheses:

1. f is continuous on the closed interval $[a, b]$
2. f is differentiable on the open interval (a, b)

Then there is a number c in (a, b), s.t.

$$f'(c) = \frac{f(b) - f(a)}{b - a} \quad \text{or} \quad f(b) - f(a) = f'(c)(b - a)$$
The eq. of the secant line AB is
\[y - f(a) = \frac{f(b) - f(a)}{b-a} (x-a) \]
or
\[y = f(a) + \frac{f(b) - f(a)}{b-a} (x-a) \]
Let
\[h(x) = f(x) - \left[f(a) + \frac{f(b)-f(a)}{b-a} (x-a) \right] \]
Since $h(x)$ is the sum of f and a first-degree polynomial, both of which are cont. on $[a,b]$ and diff. on (a,b), we know that $h(x)$ is also cont. on $[a,b]$ and diff. on (a,b) and
\[h'(x) = f'(x) - \frac{f(b)-f(a)}{b-a} \]
Besides, $h(a) = f(a) - \left[f(a) + \frac{f(b)-f(a)}{b-a} (a-a) \right] = 0$ and $h(b) = f(b) - \left[f(b) + \frac{f(b)-f(a)}{b-a} (b-a) \right] = 0$

ie. $h(a) = h(b) = 0$

Therefore, by Rolle's Thm., there exists a number c in (a,b) s.t. $h'(c) = 0$

That is,
\[h'(c) = f'(c) - \frac{f(b)-f(a)}{b-a} = 0 \]

ie. $f'(c) = \frac{f(b)-f(a)}{b-a}$
Consider \(f(x) = x^3 - x \), \(a = 0 \), \(b = 2 \)

Since \(f \) is a polynomial, \(f \) is cont. on \([0,2]\) and diff on \((0,2)\).

Therefore, by Mean Value Theorem, there is a number \(c \in (0,2) \) s.t. \(f(c) - f(0) = f'(c)(2-0) \)

Substitute \(f(2) = 6 \), \(f(0) = 0 \) and \(f'(x) = 3x^2 - 1 \) into the eq.

we get \[6 - 0 = (3c^2 - 1)(2-0) \]

\[6c^2 = 8 \Rightarrow c^2 = \frac{4}{3} \Rightarrow c = \pm \frac{2}{\sqrt{3}} = \pm \frac{2}{\sqrt{3}} \]

But \(c \) must lie in \((0,2)\), so \(c = \frac{2}{\sqrt{3}} \)

The main significance of the Mean Value Thm is that it enable us to obtain information about a function from information about its derivative.

2.5 Suppose that \(f(0) = -3 \) and \(f'(x) \leq 5 \) for all values of \(x \). How large can \(f(2) \) possibly be?

Since \(f(x) \) exists for all \(x \), that is, \(f \) is diff and therefore conti. everywhere.

In particular, we can apply the Mean Value Thm on the interval \([0,2]\).

There exists a number \(c \in (0,2) \) s.t. \(f(2) - f(0) = f'(c)(2-0) \)

\[f(2) = f(0) + 2f'(c) = -3 + 2f'(c) \leq -3 + 2 \cdot 5 = 7 \]

The largest possible value for \(f(2) \) is 7.
If \(f(x) = 0 \) for all \(x \) in an interval \((a, b) \), then \(f \) is constant on \((a, b) \).

Proof:

Let \(x_1 \) and \(x_2 \) be any two numbers in \((a, b) \) with \(x_1 < x_2 \).

Since \(f \) is diff. and therefor cont. on \((a, b) \), it must be diff. on \((x_1, x_2) \) and cont. on \([x_1, x_2] \).

By applying the Mean Value Theorem to \(f \) on the interval \([x_1, x_2] \), we know that there is a number \(c \) s.t. \(f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \).

Since \(f'(c) = 0 \), we have \(f(x_2) - f(x_1) = 0 \) i.e. \(f(x_2) = f(x_1) \).

Therefore, \(f \) has the same value at any two numbers in \((a, b) \).

This means \(f \) is constant on \((a, b) \).

Corollary 7

If \(f'(x) = g'(x) \) for all \(x \) in an interval \((a, b) \), then \(f-g \) is constant on \((a, b) \); that is, \(f(x) = g(x) + C \) where \(C \) is a constant.

Proof:

Let \(F(x) = f(x) - g(x) \). Then \(F'(x) = f'(x) - g'(x) = 0 \) for all \(x \) in \((a, b) \).

Thus, by Theorem 5, we conclude that \(F \) is constant, i.e. \(f-g \) is constant.
6] Prove the identity \(\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \)

Let \(f(x) = \tan^{-1} x + \cot^{-1} x \)

Then \(f'(x) = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0 \) for all \(x \)

Therefore \(f(x) = C \) where \(C \) is a constant.

To determine the value of \(C \), we substitute 1 for \(x \) into the eq.

\[C = f(1) = \tan^{-1}(1) + \cot^{-1}(1) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2} \]

Thus, \(\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \)
4.3 How Derivatives Affect the Shape of a Graph

Increasing/Decreasing Test (I/D Test)

(a) If $f'(x) > 0$ on an interval, then f is increasing on that interval.

(b) If $f'(x) < 0$ on an interval, then f is decreasing on that interval.

f1:

Let x_1 and x_2 be any two numbers in the interval with $x_1 < x_2$.

Since f is diff. (and therefore cont.) on that interval, we know f is diff. on (x_1, x_2) and cont. on $[x_1, x_2]$. So by the Mean Value Thm, there is a number $c \in (x_1, x_2)$ s.t.

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1) > 0 \quad (\because f'(c) > 0 \text{ and } x_2 - x_1 > 0)$$

i.e. $f(x_2) > f(x_1)$.

Part (b) is proved similarly.

f2: Find where the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and where it is decreasing.

$$f'(x) = 12x^3 - 12x^2 - 24x = 12x(x^2 - x - 2) = 12x(x - 2)(x + 1); \quad f'(x) = 0 \iff x = 0, 2, -1$$

<table>
<thead>
<tr>
<th>Interval</th>
<th>$f'(x)$</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x < -1$</td>
<td>$-$</td>
<td>\uparrow on $(-\infty, -1)$</td>
</tr>
<tr>
<td>$-1 < x < 0$</td>
<td>$+$</td>
<td>\uparrow on $(-1, 0)$</td>
</tr>
<tr>
<td>$0 < x < 2$</td>
<td>$-$</td>
<td>\downarrow on $(0, 2)$</td>
</tr>
<tr>
<td>$x > 2$</td>
<td>$+$</td>
<td>\downarrow on $(2, \infty)$</td>
</tr>
</tbody>
</table>

So f is increasing (\uparrow) on $(-1, 0)$ and $(2, \infty)$ and it is decreasing (\downarrow) on $(-\infty, -1)$ and $(0, 2)$.
The First Derivative Test

Suppose that \(x = c \) is a critical number of a continuous function \(f \).

(a) If \(f' \) changes from positive to negative at \(x = c \), then \(f \) has a local max. at \(x = c \).
(b) If \(f' \) changes from negative to positive at \(x = c \), then \(f \) has a local min. at \(x = c \).
(c) If \(f' \) does not change sign at \(x = c \), then \(f \) has no local max. or min. at \(x = c \).

27) Find the local min. and max. values of the function \(f \) in \(\mathbb{R} \).

$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$

1. Since \(f'(x) = 12x^3 - 12x^2 - 24x \),
 - \(f'(-1) = 0 \) is a local min. value.

2. Since \(f'(x) = 12x^3 - 12x^2 - 24x \),
 - \(f'(0) = 5 \) is a local max. value.

3. Since \(f'(x) = 12x^3 - 12x^2 - 24x \),
 - \(f'(2) = -27 \) is a local min. value.
Find the local max. and min. values of the function
\[g(x) = x + 2 \sin x, \quad 0 \leq x \leq 2\pi \]

\[g'(x) = 1 + 2 \cos x. \]
\[g'(x) = 0 \iff \cos x = -\frac{1}{2} \Rightarrow x = \frac{2\pi}{3} \text{ and } \frac{4\pi}{3} \leftarrow \text{critical numbers}. \]

<table>
<thead>
<tr>
<th>Interval</th>
<th>(g')</th>
<th>(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 < x < \frac{2\pi}{3})</td>
<td>+</td>
<td>(\uparrow) on ((0, \frac{2\pi}{3}))</td>
</tr>
<tr>
<td>(\frac{2\pi}{3} < x < \frac{4\pi}{3})</td>
<td>-</td>
<td>(\downarrow) on ((\frac{2\pi}{3}, \frac{4\pi}{3}))</td>
</tr>
<tr>
<td>(\frac{4\pi}{3} < x < 2\pi)</td>
<td>+</td>
<td>(\uparrow) on ((\frac{4\pi}{3}, 2\pi))</td>
</tr>
</tbody>
</table>

By the First Derivative Test,
the local max. value = \[g\left(\frac{2\pi}{3}\right) = \frac{2\pi}{3} + 2\sin\frac{2\pi}{3} = \frac{2\pi}{3} + 2\left(\frac{\sqrt{3}}{2}\right) = \frac{2\pi}{3} + \sqrt{3} \]
the local min. value = \[g\left(\frac{4\pi}{3}\right) = \frac{4\pi}{3} + 2\sin\frac{4\pi}{3} = \frac{4\pi}{3} + 2\left(\frac{-\sqrt{3}}{2}\right) = \frac{4\pi}{3} - \sqrt{3} \]
What Does f'' Say about f?

Def

1. If the graph of f lies above all of its tangent lines on an interval I, then it is called **concave upward** (CU) on I.
2. If the graph of f lies below all of its tangent lines on an interval I, then it is called **concave downward** (CD) on I.

Concavity Test

(a) If $f''(x) > 0$ for all x in I, then the graph of f is concave upward (CU) on I.

(b) If $f''(x) < 0$ for all x in I, then the graph of f is concave downward (CD) on I.
Def
A point P on the curve $y = f(x)$ is called an **inflection point** if f is continuous and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.

Sketch a possible graph of a function f that satisfies the following conditions:
(i) $f'(x) > 0$ on $(-\infty, 1)$, $f'(x) < 0$ on $(1, \infty)$
(ii) $f''(x) > 0$ on $(-\infty, -2)$ and $(2, \infty)$, $f''(x) < 0$ on $(-2, 2)$
(iii) $\lim_{x \to -\infty} f(x) = -2$, $\lim_{x \to \infty} f(x) = 0$

By (i), we know that f is C^1 on $(-\infty, 1)$ and 2 on $(1, \infty)$.
By (ii), we know that f is C^2 on $(-\infty, -2)$ and $(2, \infty)$ and f is C^3 on $(-2, 2)$.
By (iii), we know that $y = -2$ and $y = 0$ are horizontal asymptotes of $y = f(x)$.
The Second Derivative Test

Suppose f'' is continuous near c

(a) If $f'(c) = 0$ and $f''(c) > 0$, then f has a local min. at $x = c$
(b) If $f'(c) = 0$ and $f''(c) < 0$, then f has a local max. at $x = c$

6] Discuss the curve $y = x^4 - 4x^3$ w.r.t. concavity, points of inflection, and local max. or min. Use this information to sketch the curve.

[1]: If $f(x) = x^4 - 4x^3$, then $f'(x) = 4x^3 - 12x^2 = 4x^2(x - 3)$ and $f''(x) = 12x^2 - 24x - 12x(x - 2)$. Therefore $f'(x) = 0 \Rightarrow x = 0, x = 3$ (critical numbers)

Since $f''(3) = 36 > 0$, $f(3) = -27$ is a local min.

Since $f''(0) = 0$, the Second Derivative Test gives no information about the critical number 0. But, by the First Derivative Test, since $f'(x) < 0$ for $x < 0$ and $0 < x < 3$, f has no local max. or min. at 0.

Set $f''(x) = 0 \Rightarrow x = 0, x = 2$

<table>
<thead>
<tr>
<th>x</th>
<th>$f'(x)$</th>
<th>$f''(x)$</th>
<th>$f''(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(-\infty, 0)$</td>
<td>$+$</td>
<td>$-$</td>
<td>CU</td>
</tr>
<tr>
<td>$(0, 2)$</td>
<td>$-$</td>
<td>$+$</td>
<td>CD</td>
</tr>
<tr>
<td>$(2, \infty)$</td>
<td>$+$</td>
<td>$-$</td>
<td>CU</td>
</tr>
</tbody>
</table>

Therefore, the inflection points are $(0, 0)$ and $(2, -16)$.
Note: (1) The Second Derivative Test is inconclusive when $f''(c) = 0$. It gives no information about the critical number c if $f''(c) = 0$.

So when $f'(c) = 0$ and $f''(c) = 0 \rightarrow$ Use the First Derivative Test.

(2) The Second Derivative Test fails when $f''(c) \text{ D.N.E.} \rightarrow$ Use the First Derivative Test.

7] Sketch the graph of the function $f(x) = x^{\frac{2}{3}} (6-x)^{\frac{1}{3}}$

01]:

$f'(x) = \frac{4-x}{x^{\frac{1}{3}} (6-x)^{\frac{2}{3}}}$

$f''(x) = \frac{-8}{x^{\frac{2}{3}} (6-x)^{\frac{5}{3}}}$

$f'(x) = 0 \iff x = 4$

$f'(x) \text{ D.N.E.} \iff x = 0, x = 6$

$\therefore x = 0, 4, 6$ are critical numbers.

$(-\infty, 0)$	$-\downarrow$	\downarrow
$(0, 4)$	$+$	\uparrow
$(4, 6)$	$-\downarrow$	\downarrow
$(6, \infty)$	$-$	\downarrow

$f''(x)$ D.N.E. $\iff x = 0, x = 6$

$(-\infty, 0)$	$-$	CD
$(0, 6)$	$-$	CD
$(6, \infty)$	$+$	CU

\therefore the point of inflection is $(6, 0)$

$f(0) = 0$ is a local min.

$f(4) = 2^{\frac{5}{3}}$ is a local max.

$f(x)$ has no local max. or min at $x = 6$.
Use the first and second derivative of \(f(x) = e^{\frac{1}{x}} \), together with asymptotes, to sketch its graph.

1. \[f'(x) = -\frac{e^{\frac{1}{x}}}{x^2} \]

 \[
 \begin{array}{c|cc}
 & f' & f \\
 \hline
 (-\infty, 0) & - & \downarrow \\
 (0, \infty) & - & \downarrow \\
 \end{array}
 \]

 \[f(x) \text{ D.N.E.} \Leftrightarrow x = 0 \]

 \(\therefore f \) has no local max. or min.

2. \[f''(x) = \frac{e^{\frac{1}{x}}(2x+1)}{x^4} \]

 \[f''(x) = 0 \Leftrightarrow x = -\frac{1}{2} \]

 \[f''(x) \text{ D.N.E.} \Leftrightarrow x = 0 \]

 \[
 \begin{array}{c|cc}
 & f'' & f \\
 \hline
 (-\infty, -\frac{1}{2}) & - & \text{CD} \\
 (-\frac{1}{2}, 0) & + & \text{CU} \\
 (0, \infty) & + & \text{CU} \\
 \end{array}
 \]

 \(\therefore \) the inflection point is \((-\frac{1}{2}, e^{2})\)

3. \[\lim_{x \to 0^+} e^{\frac{1}{x}} = \infty \quad \therefore x = 0 \text{ is a vertical asymptote} \]

 \(\lim_{x \to 0^-} e^{\frac{1}{x}} = 0 \)

 \[\lim_{x \to \pm\infty} e^{\frac{1}{x}} = e^0 = 1 \quad \therefore y = 1 \text{ is a horizontal asymptote.} \]
3.4.4 Indeterminate Forms and L'Hôpital's Rule.

If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$, then the limit $\lim_{x \to a} \frac{f(x)}{g(x)}$ is called an indeterminate form of type $0 \over 0$.

If $\lim_{x \to a} f(x) = \infty$ (or $-\infty$) and $\lim_{x \to a} g(x) = \infty$ (or $-\infty$), then the limit $\lim_{x \to a} \frac{f(x)}{g(x)}$ is called an indeterminate form of type $\frac{\infty}{\infty}$.

L'Hôpital's Rule

Suppose f and g are differentiable and $g(x) \neq 0$ near a (except possibly at a).

Suppose that $\lim_{x \to a} \frac{f(x)}{g(x)}$ is an indeterminate form of type $0 \over 0$ or $\frac{\infty}{\infty}$.

Then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ if the limit $\lim_{x \to a} \frac{f(x)}{g(x)}$ exists (or is ∞ or $-\infty$).

Note 1: It is especially important to verify the conditions regarding the limits of f and g before using L'Hôpital's Rule.

Note 2: L'Hôpital's Rule also valid for one-sided limit and for limits at infinity or negative infinity; that is, "$x \to a$" can be replace by $x \to a^+$, $x \to a^-$, $x \to \infty$ or $x \to -\infty$.

[x1] Find \(\lim_{x \to 1} \frac{\ln x}{x - 1} \)

So 1] The limit is an indeterminate form of type \(\frac{0}{0} \), we can apply L'Hôpital's Rule:

\[
\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(x - 1)} = \lim_{x \to 1} \frac{1}{1} = 1
\]

[x2] Calculate \(\lim_{x \to 0} \frac{e^x}{x^2} \)

So 1] The limit is an indeterminate form of type \(\frac{\infty}{\infty} \), we can apply L'Hôpital's Rule:

\[
\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(2x)} = \lim_{x \to \infty} \frac{e^x}{2} = \infty
\]

\[\left(\lim_{x \to \infty} \frac{e^x}{x^2} \text{ is still an indeterminate form of type } \frac{\infty}{\infty} \right)\]

So, use the L'Hôpital's Rule again.

[x3] Calculate \(\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}} \)

So 1] Apply L'Hôpital's Rule to it because it's an indeterminate form of type \(\frac{\infty}{\infty} \).

\[
\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}} = \lim_{x \to \infty} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(x^{\frac{1}{3}})} = \lim_{x \to \infty} \frac{1}{\frac{1}{3}x^{\frac{2}{3}}} = \lim_{x \to \infty} \frac{3}{\sqrt[3]{x}} = 0
\]
x4] Find \(\lim_{x \to 0} \frac{\tan x - x}{x^3} \)

01] It's of the type \(\frac{0}{0} \), so we can apply L'Hôpital's Rule:

\[
\lim_{x \to 0} \frac{\tan x - x}{x^3} = \lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2} = \lim_{x \to 0} \frac{2 \sec x \cdot \sec x \cdot \tan x}{6x} = \frac{1}{3} \lim_{x \to 0} \sec^2 x \cdot \frac{\sin x}{\cos x} \cdot \frac{1}{x} \\
(\text{type } \frac{0}{0}, \text{ use L'Hôpital's Rule again})
\]

\[
= \frac{1}{3} \lim_{x \to 0} \sec^2 x \cdot \frac{\sin x}{x} \cdot \frac{1}{\cos x} = \frac{1}{3} \cdot 1 \cdot 1 = \frac{1}{3}
\]

<4] Find \(\lim_{x \to \infty} \frac{x}{x + \sin x} \)

01] \[
\lim_{x \to \infty} \frac{x}{x + \sin x} \neq \lim_{x \to \infty} \frac{1}{1 + \cos x} \quad \text{the limit does not exist.}
\]

\[
\lim_{x \to \infty} \frac{x}{x + \sin x} = \lim_{x \to \infty} \frac{x}{x + \sin x} = \lim_{x \to \infty} \frac{1}{1 + \frac{\sin x}{x}} = 1
\]
Indeterminate Products

If \(\lim_{x \to a} f(x) = 0 \) and \(\lim_{x \to a} g(x) = \infty \) (or \(-\infty\)), then the limit \(\lim_{x \to a} f(x)g(x) \) is called an indeterminate form of type \(0 \cdot \infty \).

\[
\lim_{x \to a} f(x)g(x) = \begin{cases}
\lim_{x \to a} \frac{f(x)}{g(x)} & \text{indeterminate form of type } \frac{0}{\infty} \\
\lim_{x \to a} \frac{g(x)}{f(x)} & \text{indeterminate form of type } \frac{\infty}{0}
\end{cases}
\]

67 Evaluate \(\lim_{x \to 0^+} x \ln x \)

Solution: Since \(\lim_{x \to 0^+} x = 0 \) and \(\lim_{x \to 0^+} \ln x = -\infty \), the limit is an indeterminate form of type \(0 \cdot \infty \).

Using L'Hôpital's Rule, (but converting the limit into the form of type \(\frac{0}{\infty} \) or \(\frac{\infty}{0} \) first), we have

\[
\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx} \left(\frac{1}{x}\right)} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} -x = 0.
\]
Indeterminate Differences

If \(\lim_{x \to a} f(x) = \infty \) and \(\lim_{x \to a} g(x) = \infty \), then the limit \(\lim_{x \to a} [f(x) - g(x)] \) is called an indeterminate form of type \(\infty - \infty \).

In this case, we try to convert the difference into a quotient so that we have an indeterminate form of type \(\frac{\infty}{\infty} \) or \(\frac{0}{0} \).

\[x^7 \] Compute \(\lim_{x \to \frac{\pi}{2}} \left(\sec x - \tan x \right) \)

Solution: This is an indeterminate form of \(\infty - \infty \). We'll try to convert the difference into a quotient.

\[
\lim_{x \to \frac{\pi}{2}} \left(\sec x - \tan x \right) = \lim_{x \to \frac{\pi}{2}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right) = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x} \quad \text{(indeterminate form of type \(\frac{0}{0} \))}
\]

\[= \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-\sin x} \]

\[= 0 \]
Indeterminate Powers

If \(\lim_{x \to a} f(x) = 0 \) and \(\lim_{x \to a} g(x) = 0 \), then the limit \(\lim_{x \to a} [f(x)]^{g(x)} \) is called an indeterminate form of type \(0^0 \).

If \(\lim_{x \to a} f(x) = \infty \) and \(\lim_{x \to a} g(x) = 0 \), then the limit \(\lim_{x \to a} [f(x)]^{g(x)} \) is called an indeterminate form of type \(\infty^0 \).

If \(\lim_{x \to a} f(x) = 1 \) and \(\lim_{x \to a} g(x) = \pm \infty \), then the limit \(\lim_{x \to a} [f(x)]^{g(x)} \) is called an indeterminate form of type \(1^\infty \).

In these cases, we'll write the function \([f(x)]^{g(x)} \) as an exponential:
\[
[f(x)]^{g(x)} = e^{\ln[f(x)]^{g(x)}} = e^{g(x) \ln f(x)}
\]

Ex 9] Find \(\lim_{x \to b^+} x^x \)

Sol]: It's an indeterminate form of type \(0^0 \).
\[
\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{\ln x^x} = \lim_{x \to 0^+} e^{x \ln x} = e^{\lim_{x \to 0^+} x \ln x} = e^0 = 1
\]
\((\because e^x \) is conti. and \(\lim_{x \to 0} x \ln x = 0 \) exists by Ex 6)
Calculate \(\lim_{x \to 0^+} (1 + \sin 4x)^{\cot x} \)

Solution:

This is an indeterminate form of type \(1^\infty\).

\[
\lim_{x \to 0^+} (1 + \sin 4x)^{\cot x} = \lim_{x \to 0^+} e^{\ln (1 + \sin 4x) \cot x} = \lim_{x \to 0^+} e^{\cot x \cdot \ln (1 + \sin 4x)}
\]

Since \(\lim_{x \to 0^+} \cot x \cdot \ln (1 + \sin 4x) = \lim_{x \to 0^+} \frac{\ln (1 + \sin 4x)}{\tan x} = \lim_{x \to 0^+} \frac{\cos 4x \cdot 4}{1 + \sin 4x} \cdot \frac{4}{\sec^2 x} = 4 \),

we have that \(\lim_{x \to 0^+} (1 + \sin 4x)^{\cot x} = e^{\lim_{x \to 0^+} \cot x \cdot \ln (1 + \sin 4x)} = e^4 \) (\(e^x \) is a continuous function)
4.5 Summary of Curve Sketching

Guidelines for Sketching a Curve:

1. Domain
2. Intercepts
3. Symmetry:
 (i) \(f(-x) = f(x) \) \(\iff \) \(f \) is an even function
 \(\iff \) the graph of \(f \) is symmetric about the y-axis.
 (ii) \(f(-x) = -f(x) \) \(\iff \) \(f \) is an odd function
 \(\iff \) the graph of \(f \) is symmetric about the origin.
 (iii) \(f(x+p) = f(x) \) for all \(x \in \text{D}_f \), where \(p \) is a positive integer.
 \(\iff \) \(f \) is a periodic function.

D. Asymptotes:
 Find vertical asymptotes or horizontal asymptotes or slant asymptotes

 If \(\lim_{x \to \infty} [f(x) - (ax+b)] = 0 \), then the line \(y = ax + b \) is called a
 slant asymptote.

 [EX] If \(f(x) = x + \frac{1}{x} \), then \(\lim_{x \to \infty} [f(x) - x] = \lim_{x \to \infty} \frac{1}{x} = 0 \).
 Therefore \(y = x \) is a slant asymptote of \(y = f(x) \).
E. Intervals of Increase or Decrease

F. Local Maximum and Minimum Values

G. Concavity and Points of Inflection

H. Sketch the Curve.

\[y = \frac{2x^2}{x^2 - 1} \]

1. Sketch the curve \(y = \frac{2x^2}{x^2 - 1} \)

2. Let \(f(x) = \frac{2x^2}{x^2 - 1} \)

A. \(D_f = \{ x \mid x \neq \pm 1 \} = (-\infty, -1) \cup (-1, 1) \cup (1, \infty) \)

B. The \(x \)-intercept = 0 and the \(y \)-intercept = 0

C. Symmetry.
 Since \(f(-x) = f(x) \), \(f \) is even. The curve is symmetric about the \(y \)-axis.

D. Asymptotes.
 \[\lim_{x \to 1^+} f(x) = \infty, \quad \lim_{x \to 1^-} f(x) = -\infty, \quad \lim_{x \to 1^+} f(x) = -\infty, \quad \lim_{x \to 1^-} f(x) = \infty \]
 \[x = 1 \text{ and } x = -1 \text{ are vertical asymptotes of the curve } y = \frac{2x^2}{x^2 - 1} \]
 \[\lim_{x \to \pm\infty} f(x) = 2 \quad \therefore y = 2 \text{ is the horizontal asymptote of the curve} \]
E. Intervals of Increase or Decrease.

\[
\frac{f'(x)}{f(x)} = \frac{4x(x^2-1) - 2x^2 - 2x}{(x^2-1)^2} = \frac{-4x}{(x^2-1)^2}, \quad f'(x) = 0 \Leftrightarrow x = 0 \text{ (critical number)}
\]

| \(x < 0, x \neq -1\) | + | \(\uparrow\) on \((-\infty, -1) \cup (1, 0)\) |
| \(x > 0, x \neq 1\) | - | \(\downarrow\) on \((0, 1) \cup (1, \infty)\) |

F. The local maximum value = \(f(0) = 0\)

G. Concavity and Points of Inflection.

\[
f''(x) = \frac{-4x(x^2-1)^3 - (-4x) \cdot 2(x^2-1) \cdot 2x}{(x^2-1)^4} = \frac{12x^2 + 4}{(x^2-1)^3}
\]

\(f''(x) < 0 \Leftrightarrow x^2 - 1 > 0 \Leftrightarrow x = \pm 1\)

\(-\infty, -1\)	+	\(CU\)
\((-1, 1)\)	-	\(CD\)
\((1, \infty)\)	+	\(CU\)

: There is no inflection point because \(x = \pm 1\) are not in the domain of \(f\).
Sketch the graph of \(f(x) = 5(x-1)^{\frac{3}{5}} - 2(x-1)^{\frac{5}{3}} \)

A. \(D_f = \mathbb{R} \)

B. Intercepts: \(y = 5(x-1)^{\frac{3}{5}} - 2(x-1)^{\frac{5}{3}} \) when \(x = 0 \), \(y = 7 \)
when \(y = 0 \), \((x-1)^{\frac{3}{5}} [5-2(x-1)] = 0 \) \(\Rightarrow x = 1 \) or \(\frac{7}{2} \)

C. Symmetry: None

D. Asymptote: None

E. Intervals of Increase or Decrease.
\[
f'(x) = \frac{10(2-x)}{3(x-1)^{\frac{2}{3}}} \]

\(f'(x) = 0 \Leftrightarrow x = 2 \)

\(f'(x) \) D.N.E. \(\Leftrightarrow x = 1 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f')</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, 1))</td>
<td>-</td>
<td>↘</td>
</tr>
<tr>
<td>((1, 2))</td>
<td>+</td>
<td>↗</td>
</tr>
<tr>
<td>((2, \infty))</td>
<td>-</td>
<td>↘</td>
</tr>
</tbody>
</table>

F. The local max. value = \(f(2) = 3 \)
The local min. value = \(f(1) = 0 \)

G. Concavity and points of inflection
\[
f''(x) = \frac{10(1-2x)}{9(x-1)^{\frac{5}{3}}} \]

\(f''(x) = 0 \Leftrightarrow x = \frac{1}{2} \)
\(f''(x) \) D.N.E. \(\Leftrightarrow x = 1 \)

\[\begin{array}{c|c|c}
 x & f'' & f \\
 \hline
 (-\infty, \frac{1}{2}) & + & CU \\
 (\frac{1}{2}, 1) & - & CD \\
 (1, \infty) & - & CD \\
\end{array} \]

\(\text{the inflection point is } (\frac{1}{2}, 3^{\frac{3}{2}}) \)

H.

\[y = 5(x-1)^{\frac{3}{5}} - 2(x-1)^{\frac{5}{3}} \]
3. Sketch the graph of \(f(x) = xe^x \)

Solution:

A. \(D_f = \mathbb{R} \)

B. The x-intercept and y-intercept are both 0

C. Symmetry: None

D. Asymptotes:

- \(\lim_{x \to \infty} xe^x = \infty \)
- \(\lim_{x \to -\infty} xe^x = 0 \)

\(y = 0 \) is the horizontal asymptote

E. Intervals of Increase or Decrease

\(f(x) = xe^x + e^x = (x+1)e^x \)

\(f'(x) = 0 \iff x = -1 \)

<table>
<thead>
<tr>
<th>Interval</th>
<th>(f')</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, -1))</td>
<td>-</td>
<td>↓</td>
</tr>
<tr>
<td>((-1, \infty))</td>
<td>+</td>
<td>↑</td>
</tr>
</tbody>
</table>

F. The local min. value is \(f(-1) = -\frac{1}{e} \)

There's no local max.

G. \(f''(x) = (x+1)e^x + e^x = (x+2)e^x \)

\(f''(x) = 0 \iff x = -2 \)
Sketch the graph of \(f(x) = 2 \cos x + \sin 2x \)

\[f(x) = 2 \cos x + \sin 2x \]

Solution:

A. \(D_f = \mathbb{R} \)

B. The y-intercept is \(f(0) = 2 \)

\[2 \cos x + \sin 2x = 0 \]

\[2 \cos x (1 + \sin x) = 0 \]

\[\cos x = 0 \quad \text{or} \quad \sin x = -1 \]

\[x = \frac{\pi}{2} \quad \text{or} \quad x = \frac{3\pi}{2} \quad (\text{in } [0, 2\pi]) \]

C. \(f \) is neither odd nor even, but \(f(x + 2\pi) = f(x) \) for all \(x \).

Therefore \(f \) is a periodic function with period \(2\pi \).

We may consider only \(0 \leq x \leq 2\pi \).

D. Asymptote: None

E. \(f'(x) = -2 \sin x + 2 \cos 2x = -2 \sin x + 2(1 - 2 \sin^2 x) \)

\[= -2(2 \sin x + \sin x - 1) = -2(\sin x + 1)(2 \sin x - 1) \]

\[f'(x) = 0 \quad \iff \quad \sin x = -1 \quad \text{or} \quad \sin x = \frac{1}{2} \]

\[\iff \quad \text{in } [0, 2\pi], \quad x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2} \]

F. \(f''(x) = -2 \cos x (1 + 4 \sin x) \)

\[f''(x) = 0 \iff \cos x = 0 \quad \text{or} \quad \sin x = -\frac{1}{2} \]

\[\Rightarrow \quad x = \frac{\pi}{2}, \frac{3\pi}{2}, \alpha_1, \alpha_2 \]

where \(\alpha_1 = \pi + \sin^{-1}(\frac{1}{2}) \)

\[\alpha_2 = 2\pi - \sin^{-1}(\frac{1}{2}) \]

\[\begin{array}{c|c|c}
\alpha_1, \frac{3\pi}{2} & - & CD \\
\frac{\pi}{2}, \alpha_2 & + & CU \\
(\alpha_1, \frac{3\pi}{2}) & - & CD \\
(\frac{3\pi}{2}, \alpha_2) & + & CU \\
(\alpha_1, \frac{3\pi}{2}) & - & CD \\
\end{array} \]

The inflection points are \((\frac{\pi}{2}, 0), (\alpha_1, f(\alpha_1)), (\alpha_2, f(\alpha_2))\)

\[y = \sin x \]

\[y = x \]

H. We draw the curve on \([0, 2\pi]\) first, then extend the curve by translation.
Sketch the graph of \(y = \ln(4-x^2) \)

Let \(f(x) = \ln(4-x^2) \)

A. \(D_f = \{ x \mid 4-x^2 > 0 \} = \{ x \mid -2 < x < 2 \} = (-2, 2) \)

B. The y-intercept is \(f(0) = \ln 4 \).
 * The x-intercept:
 \[\ln(4-x^2) = 0 \Rightarrow 4-x^2 = 1 \Rightarrow x = \pm \sqrt{3} \]

C. Symmetry:
 \(\therefore f(-x) = f(x) \) \(\therefore f \) is an even function
 * The curve is symmetric about the y-axis.

D. Asymptote:
 \[\lim_{x \to 2^-} \ln(4-x^2) = -\infty \quad \lim_{x \to 2^+} \ln(4-x^2) = -\infty \]
 \(\therefore x = 2 \) and \(x = -2 \) are vertical asymptotes

E. Intervals of Increase or Decrease.
 \[f'(x) = \frac{-2x}{4-x^2} \]
 \[f''(x) = 0 \iff x = 0 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f')</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-2, 0)</td>
<td>+</td>
<td>↑</td>
</tr>
<tr>
<td>(0, 2)</td>
<td>-</td>
<td>↓</td>
</tr>
</tbody>
</table>

F. The local Max. value = \(f(0) = \ln 4 \)

G. Concavity and points of inflection.
 \[f''(x) = \frac{-2(4-x^2)}{(4-x^2)^2} \cdot (-\infty) \cdot (-\infty) \]
 \[= \frac{-8+2x^2}{(4-x^2)^2} \]
 * Since \(f''(x) < 0 \) for all \(x \) in \((-2, 2)\)
 * The curve is CD on \((-2, 2)\) and there is no point of inflection.

H. [Graph of \(y = \ln(4-x^2) \)]
Sketch the graph of \(f(x) = \frac{x^3}{x^2 + 1} \)

1. \(D_f = \mathbb{R} \)
2. The \(x \)-intercept and \(y \)-intercept are both 0.
 Since \(f(-x) = -f(x) \), \(f \) is odd and its graph is symmetric about the origin.
4. Asymptotes.
 \(\therefore f(x) = x - \frac{x}{x^2 + 1} \)
 \(\therefore \lim_{x \to \pm \infty} (f(x) - x) = \lim_{x \to \pm \infty} \left(-\frac{x}{x^2 + 1} \right) = 0 \)
 \(\therefore y = x \) is a slant asymptote
5. Intervals of Increase or Decrease
 \(f'(x) = \frac{x^2(x^2 + 3)}{(x^2 + 1)^2} \)
 Since \(f'(x) > 0 \) for all \(x \in \mathbb{R}, x \neq 0 \), \(f \) is increasing on \(\mathbb{R} \).
6. There's no local max. or min.

\[\frac{2x(3-x^2)}{(x^2+1)^3} \]
\[f(x) = 0 \iff x = 0, x = \pm \sqrt{3} \]
\[
\begin{array}{c|c|c}
\hline
x & f'' & f \\
\hline
(-\infty, -\sqrt{3}) & + & CU \\
(-\sqrt{3}, 0) & - & CD \\
(0, \sqrt{3}) & + & CU \\
(\sqrt{3}, \infty) & - & CD \\
\hline
\end{array}
\]
\(\therefore \) the inflection points are \((-\sqrt{3}, -\frac{3\sqrt{3}}{4}) \) \((0, 0) \) \((\sqrt{3}, \frac{3\sqrt{3}}{4}) \)
Example 1 A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

Solution:

Let x and y be the depth and width of the rectangle (in feet). Then $A = xy$ and $2x + y = 2400 \Rightarrow y = 2400 - 2x$.

Thus, $A = x(2400 - 2x) = 2400x - 2x^2$, $0 \leq x \leq 1200$.

We want to maximize A which is cont. on the closed interval $[0, 1200]$.

$A'(x) = 2400 - 4x$.

$A'(x) = 0 \Leftrightarrow x = 600$ (critical number).

$\Rightarrow A(600) = 7200000$.

$\therefore A(0) = 0$, $A(1200) = 0$.

$\therefore A(600) = 7200000$ is the absolute max. value of the area.

(OR. $A' > 0$ when $x < 600$ and $A' < 0$ when $x > 600$.

$\therefore A$ is on $(0, 600)$ and ∇ on $(600, 1200)$.

Therefore $A(600)$ is a local max. value and also an absolute max. value.

Thus, the rectangular field should be 600 ft deep and 1200 ft wide. \times
EXAMPLE 2 A cylindrical can is to be made to hold 1 L of oil. Find the dimensions that will minimize the cost of the metal to manufacture the can.

Suppose the can has radius r and height h (in centimeter).

In order to minimize the cost of the metal, we minimize the total surface area of the can.

$$A = 2\pi r^2 + 2\pi rh$$

The volume is given to be 1 L ($=1000$ cm3). Thus, \(\pi r^2 h = 1000 \)

\[h = \frac{1000}{\pi r^2} \]

Substitution of this into the expression for A gives

$$A = 2\pi r^2 + 2\pi r \cdot \frac{1000}{\pi r^2} = 2\pi r^2 + \frac{2000}{r}$$

To minimize A, we have to find the critical number first:

$$A' = 4\pi r - \frac{2000}{r^2} = \frac{4\pi r^3 - 2000}{r^2}$$

So $A' = 0 \Rightarrow r = \sqrt[3]{\frac{500}{\pi}}$

Since $A'(r) < 0$ when $r < \sqrt[3]{\frac{500}{\pi}}$ and $A'(r) > 0$ when $r > \sqrt[3]{\frac{500}{\pi}}$, we know that $A(r)$ is on $(0, \sqrt[3]{\frac{500}{\pi}})$ and A is on $(\sqrt[3]{\frac{500}{\pi}}, \infty)$.

Therefore, A has an absolute min. at $r = \sqrt[3]{\frac{500}{\pi}}$.

The value of h corresponding to $r = \sqrt[3]{\frac{500}{\pi}}$ is

$$h = \frac{1000}{\pi \left(\sqrt[3]{\frac{500}{\pi}}\right)^2} = 2 \sqrt[3]{\frac{500}{\pi}} = 2r$$

Thus, the radius should be $\sqrt[3]{\frac{500}{\pi}}$ cm and the height should be equal to the diameter.
EXAMPLE 3 Find the point on the parabola $y^2 = 2x$ that is closest to the point $(1, 4)$.

The distance between the point $(1,4)$ and the point (x,y) is

$$d = \sqrt{(x-1)^2 + (y-4)^2}$$

Since (x,y) lies on the parabola, we have $y^2 = 2x \Rightarrow x = \frac{y^2}{2}$,

$$d = \sqrt{\left(\frac{y^2}{2} - 1\right)^2 + (y-4)^2} = \sqrt{\frac{1}{4}y^4 - 8y + 17}$$

Instead of minimizing d, we minimize $d^2 = \frac{1}{4}y^4 - 8y + 17$

Let $f(y) = \frac{1}{4}y^4 - 8y + 17$

$f'(y) = y^3 - 8$, so $f'(y) = 0 \Leftrightarrow y = 2$.

Observe that $f'<0$ when $y<2$ and $f'>0$ when $y>2$, that is, f is decreasing on $(-\infty, 2)$ and increasing on $(2, \infty)$.

Therefore, f has an absolute min. at $y = 2$.

The distance d also has an absolute min. at $y = 2$

When $y = 2$, $x = \frac{y^2}{2} = 2$

Thus, the point on $y^2 = 2x$ closest to $(1, 4)$ is $(2, 2)$.

*
EXAMPLE 4 A man launches his boat from point A on a bank of a straight river, 3 km wide, and wants to reach point B, 8 km downstream on the opposite bank, as quickly as possible (see Figure 7). He could row his boat directly across the river to point C and then run to B, or he could row directly to B, or he could row to some point D between C and B and then run to B. If he can row 6 km/h and run 8 km/h, where should he land to reach B as soon as possible? (We assume that the speed of the water is negligible compared with the speed at which the man rows.)

Let \(x \) be the distance from C to D, then the running distance is \(|DB| = 8-x \), and the rowing distance is \(|AD| = \sqrt{x^2+9} \).

So the total time \(T(x) = \frac{x}{6\sqrt{x^2+9}} + \frac{8-x}{8} \)

\(0 \leq x \leq 8 \).

So \(T(x) = 0 \Leftrightarrow \frac{x}{6\sqrt{x^2+9}} = \frac{1}{8} \Leftrightarrow 4x = 3\sqrt{x^2+9} \Leftrightarrow 7x^2 = 81 \Leftrightarrow x = \frac{9}{\sqrt{7}} \) in \([0,8] \)

To find the point where the absolute min. occur at, we compare the value of \(T \) at the critical number and the end points 0 and 8.

\(T(0) = 1.5 \), \(T(\frac{9}{\sqrt{7}}) = 1 + \frac{\sqrt{7}}{8} \approx 1.33 \), \(T(8) = \frac{\sqrt{73}}{6} \approx 1.42 \).

Therefore, the absolute min. of \(T \) on the closed interval \([0,8] \) occur at \(x = \frac{9}{\sqrt{7}} \). Thus, the man should land the boat at a point \(\frac{9}{\sqrt{7}} \) km downstream from his starting point.
EXAMPLE 5 Find the area of the largest rectangle that can be inscribed in a semicircle of radius \(r\).

[Sol 1]:

Let \((x,y)\) be the vertex that lies in the first quadrant.
Then the rectangle has sides of lengths \(2x\) and \(y\).
So the area \(A = 2xy\).
\[\Rightarrow A = 2x\sqrt{r^2-x^2} \quad 0 \leq x \leq r\]
\[A' = 2\sqrt{r^2-x^2} - \frac{2x^2}{\sqrt{r^2-x^2}} = \frac{2(r^2-2x^2)}{r^2-x^2}, \text{ so } A'(r_0) = 0 \iff x = \frac{r}{\sqrt{2}}\]
Since \(A(0) = 0\), \(A(r) = 0\) and \(A(\frac{r}{\sqrt{2}}) = \frac{r^2}{2}\), we conclude that \(A(\frac{r}{\sqrt{2}}) = \frac{r^2}{2}\) is the absolute max. of \(A\).
The area of the largest inscribed rectangle is \(r^2\)*

[Sol 2]:

Let \(\theta\) be the angle shown in the figure on the left.
Then the area of the rectangle is
\[A(\theta) = 2r \cos \theta \cdot r \sin \theta = r^2 \sin 2\theta\]
We know that \(\sin \theta > 0\) has a max. value of \(1\) and it occurs when \(2\theta = \frac{\pi}{2}\).
Thus, \(A(\theta)\) has a max. value of \(r^2\) and it occurs when \(\theta = \frac{\pi}{4}\)*
4.9 Newton's Method

To approximate a solution to the eq. $f(x) = 0$, choose an initial approximation x_1, and calculate x_2, x_3, x_4, \ldots using

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \quad \text{for } n = 1, 2, 3, \ldots$$

If the numbers x_1, x_2, x_3, \ldots converge, they converge to a solution of $f(x) = 0$.
Note that x_{n+1} might be a worse approximation than x_n (such as x_3 in Fig. 1) when $f'(x_n)$ is close to 0. Then Newton’s Method fails and a better initial approximation x_1 should be chosen. (So does when the case in Fig. 2 happens.) Newton’s Method also fails when $f(x_n) = 0$ for some n.

In this case, there is no x_3 produced.
[EX] Use Newton's Method to find the root to the eq. \(x^3 + 3x + 1 = 0 \) to seven decimal places.

[Sol]

Let \(f(x) = x^3 + 3x + 1 \), then \(f'(x) = 3x^2 + 3 \) and

\[
X_{n+1} = X_n - \frac{f(x_n)}{f'(x_n)} = X_n - \frac{x_n^3 + 3x_n + 1}{3x_n^2 + 3}
\]

The graph of \(f \) suggests that choose \(x_1 = -0.3 \), then

\[
x_2 = x_1 - \frac{x_1^3 + 3x_1 + 1}{3x_1^2 + 3} \approx -0.3223241
\]

\[
x_3 = x_2 - \frac{x_2^3 + 3x_2 + 1}{3x_2^2 + 3} \approx -0.3221853
\]

\[
x_4 = x_3 - \frac{x_3^3 + 3x_3 + 1}{3x_3^2 + 3} \approx -0.3221853
\]

Since \(x_3 \) and \(x_4 \) agree to seven decimal places, we conclude that the root to \(x^3 + 3x + 1 = 0 \) is about \(-0.3221853\).

Usually you don’t have the graph of \(f \) ready to help you decide the value of the initial approximation. In this case, you can make use of the Intermediate Value Theorem: Since \(f(-1) \cdot f(0) < 0 \), there is a root in the interval \((-1, 0)\). Thus, you can choose \(x_1 = -0.5 \) to be the initial approximation. It’s also a good start.
x2] Use Newton's method to find $\sqrt{2}$ correct to eight decimal places.

Solution:

$\sqrt{2}$ is the root of the eq. $x^2 - 2 = 0$

Let $f(x) = x^2 - 2$. then $f'(x) = 2x$. and

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - 2}{2x_n}$$

If we choose $x_1 = 1$ as the initial approximation, then

$$x_2 \approx 1.16666667$$
$$x_3 \approx 1.12644368$$
$$x_4 \approx 1.11404907$$
$$x_5 \approx 1.112246205$$
$$x_6 \approx 1.112246205$$

Since x_5 and x_6 agree to eight decimal places, we conclude that $\sqrt{2} \approx 1.112246205$

x3] Find, correct to six decimal places, the root of the eq. $\cos x = x$

Solution:

Let $f(x) = \cos x - x$. then $f'(x) = -\sin x - 1$ and

$$x_{n+1} = x_n - \frac{\cos x_n - x_n}{-\sin x_n - 1} = x_n + \frac{\cos x_n - x_n}{\sin x_n + 1}$$

If we choose $x_1 = 1$, then

$$x_2 \approx 0.750363$$
$$x_3 \approx 0.739112$$
$$x_4 \approx 0.739085$$
$$x_5 \approx 0.739085$$

Since x_4 and x_5 agree to six decimal places, we conclude that the root to this eq. is about 0.739085.
4.10 Antiderivatives

Def
A function F is called an antiderivative of f on an interval I if $F'(x) = f(x)$ for all x in I.

![Diagram showing differentiation leading to the antiderivative of f and antidifferentiation leading to the derivative of F.]

Ex. $F(x) = \frac{1}{3}x^3$ and $G(x) = \frac{1}{3}x^3 + 5$ are both antiderivatives of $f(x) = x^2$.

Thm 1
If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is $F(x) + C$, where C is an arbitrary constant.

Ex. The most general antiderivative of $f(x) = x^2$ is $\frac{1}{3}x^3 + C$.
Find the most general antiderivative of each of the following functions.

(a) \(f(x) = \sin x \)
(b) \(f(x) = \frac{1}{x} \)
(c) \(f(x) = x^n, \ n \neq -1 \)

Solution:

(a) \[\frac{d}{dx} (-\cos x) = \sin x \] \[\therefore \text{the most general antiderivative is } -\cos x + C \]

(b) \[\frac{d}{dx} (\ln x) = \frac{1}{x} \] \[\text{on } (0, \infty) \]

So on the interval \((0, \infty)\), the most general antiderivative of \(f \) is \(\ln x + C \)

Also \[\frac{d}{dx} (\ln |x|) = \frac{1}{x} \] \[\text{for all } x \neq 0. \]

\[\therefore \text{on } (-\infty, 0) \text{ and } (0, \infty), \text{ the most general antiderivative of } f = \frac{1}{x} \text{ is } \ln |x| + C \]

Thus, the general antiderivative of \(f \) is

\[F(x) = \begin{cases}
\ln x + C & \text{if } x > 0 \\
\ln(-x) + C & \text{if } x < 0.
\end{cases} \]

(c) \[\therefore \text{when } n \neq -1, \frac{d}{dx} \left(\frac{1}{n+1} x^{n+1} \right) = x^n \]

\[\therefore \text{the most general antiderivative of } f(x) = x^n \text{ is} \]

\[F(x) = \frac{x^{n+1}}{n+1} + C \]
Table of Antidifferentiation Formula

<table>
<thead>
<tr>
<th>Function</th>
<th>Particular Antiderivative</th>
<th>Function</th>
<th>Particular Antiderivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c \cdot f(x)$</td>
<td>$c \cdot F(x)$</td>
<td>$\sin x$</td>
<td>$-\cos x$</td>
</tr>
<tr>
<td>$f(x) + g(x)$</td>
<td>$F(x) + G(x)$</td>
<td>$\sec x$</td>
<td>$\tan x$</td>
</tr>
<tr>
<td>$x^n (n \neq -1)$</td>
<td>$\frac{1}{n+1} x^{n+1}$</td>
<td>$\sec x \tan x$</td>
<td>$\sec x$</td>
</tr>
<tr>
<td>$\frac{1}{x}$</td>
<td>$\ln</td>
<td>x</td>
<td>\cdot 1$</td>
</tr>
<tr>
<td>e^x</td>
<td>e^x</td>
<td>$\frac{1}{1+x^2}$</td>
<td>$\tan^{-1} x$</td>
</tr>
<tr>
<td>$\cos x$</td>
<td>$\sin x$</td>
<td>$\frac{1}{x \sqrt{x^2-1}}$</td>
<td>$\sec^{-1} x$</td>
</tr>
</tbody>
</table>

27] Find all functions g s.t. $g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$

Solution:

$g'(x) = 4\sin x + 2x^4 - x^{-\frac{1}{2}}$

$\therefore g(x) = 4(-\cos x) + 2\left(\frac{2}{5} x^5\right) - \frac{1}{5} x^{\frac{5}{2}} + C$

$= -4 \cos x + \frac{2}{5} x^5 - 2x^{\frac{1}{2}} + C$
[Ex 3] Find \(f \) in \(f(x) = e^x + 20(1 + x^2)^{-1} \) and \(f(0) = -2 \).

[Sol]:

\[f(x) = e^x + \frac{20}{1 + x^2} \]

\[\Rightarrow f(x) = e^x + 20 \tan^{-1}x + C \]

Since \(f(0) = -2 \), we have \(f(0) = e^0 + 20 \tan^{-1}0 + C = -2 \)

\[\Rightarrow C + 1 = -2 \quad \Rightarrow C = -3 \]

So the particular solution is \(f(x) = e^x + 20 \tan^{-1}x - 3 \).

[Ex 4] Find \(f \) if \(f''(x) = 12 x^2 + 6 x - 4 \), \(f(0) = 4 \) and \(f(1) = 1 \)

[Sol]:

\[f(x) = 12 \left(\frac{1}{3} x^3 \right) + 6 \left(\frac{1}{2} x^2 \right) - 4 \cdot x + C = 4x^3 + 3x^2 - 4x + C \]

\[\Rightarrow f(x) = 4 \left(\frac{1}{4} x^4 \right) + 3 \left(\frac{1}{2} x^2 \right) - 4 \left(\frac{1}{2} x^2 \right) + Cx + D = x^4 + x^2 - 2x^2 + Cx + D \]

\[\Rightarrow f(0) = 4 \quad \Rightarrow f(0) = D = 4 \]

\[\Rightarrow f(1) = 1 \quad \Rightarrow f(1) = 1 + 1 - 2 + C + D = 1 \quad \Rightarrow C + D = 1 \quad \Rightarrow C = -3 \]

Thus, the required function is \(f(x) = x^4 + x^2 - 2x^2 - 3x + 4 \).
EX 5] The graph of a function f is given below. Make a rough sketch of an antiderivative F, given $F(0) = 2$.

Solution:

Note that $F'(x) = f(x)$

1. $f = F' < 0$ on $(0, 1) \Rightarrow F$ is decreasing on $(0, 1)$
2. $f = F' > 0$ on $(1, 3) \Rightarrow F$ is increasing on $(1, 3)$
3. $f = F' < 0$ on $(3, \infty) \Rightarrow F$ is decreasing on $(3, \infty)$

4. F has a local min. at $x = 1$ (horizontal tangent)
5. F has a local max. at $x = 3$ (horizontal tangent)

6. $f(x) \to 0$ as $x \to \infty \Rightarrow$ the graph of F becomes flatter as $x \to \infty$.

Also notice that $F''(x) = f'(x)$

7. $f' = F'' > 0$ on $(0, 2) \Rightarrow F$ is CU on $(0, 2)$
8. $f' = F'' < 0$ on $(2, 4) \Rightarrow F$ is CD on $(2, 4)$
9. $f' = F'' > 0$ on $(4, \infty) \Rightarrow F$ is CU on $(4, \infty)$

10. F has inflection points when $x = 2$ and $x = 4$
Ex 6] If \(f(x) = \sqrt{1 + x^3} - x \), sketch the graph of the antiderivative \(F \) that satisfies the initial condition \(F(-1) = 0 \).

Solu]

You may draw the graph of \(f \) first and then use it to graph \(F \) as in Ex 5.

But, this time let's create a more accurate graph by using what is called a direction field instead.

A direction field for \(f(x) = \sqrt{1 + x^3} - x \)
The slope of the line segments above \(x = a \) is \(f(a) \)

The graph of an antiderivative \(F \) satisfying \(F(-1) = 0 \) follows the direction field.
A particle moves in a straight line and has acceleration given by \(a(t) = 6t + 4 \). Its initial velocity is \(v(0) = -6 \text{ cm/s} \) and its initial displacement is \(s(0) = 9 \text{ cm} \). Find its position function \(s(t) \).

Solution:

\[
\begin{align*}
\vdash v'(t) &= a(t) = 6t + 4 \\
\vdash v(t) &= 3t^2 + 4t + C \\
\text{Since } v(0) &= -6, \text{ we have } v(0) = C = -6 & \vdash v(t) &= 3t^2 + 4t - 6 \\
\text{Next, } s'(t) &= v(t) = 3t^2 + 4t - 6 \\
\vdash s(t) &= t^3 + 2t^2 - 6t + D \\
\text{Since } s(0) &= 9, \text{ we have } s(0) = D = 9 \\
\text{Thus, } s(t) &= t^3 + 2t^2 - 6t + 9
\end{align*}
\]
A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later. When does it reach its maximum height? When does it hit the ground.

1. The motion is vertical and the height above the ground at time \(t \) is its position function \(S(t) \). We choose the positive direction to be upward. Since the velocity \(v(t) \) is decreasing, the acceleration must be negative.

 \[a(t) = v'(t) = -32 \quad \Rightarrow \quad v(t) = -32t + C. \]

 \[\therefore \quad v(0) = 48 \quad \Rightarrow \quad v(0) = C = 48. \quad \text{Therefore} \quad v(t) = -32t + 48. \]

 Since \(S'(t) = 0 \) \(\Rightarrow 0 = -32t + 48 \), we have \(S(t) = -16t^2 + 48t + D \)

 \[\therefore S(0) = 432 \quad \Rightarrow \quad 432 = D. \quad \text{Thus,} \quad S(t) = -16t^2 + 48t + 432 \]

2. The ball reaches its maximum height \(\iff S'(t) = v(t) = 0 \)

 \[-32t + 48 = 0 \quad \iff \quad t = \frac{48}{32} = \frac{3}{2} \text{ (sec.)} \]

3. The ball hits the ground \(\iff S(t) = 0 \iff -16t^2 + 48t + 432 = 0 \)

 \[t^2 - 3t - 27 = 0 \quad \iff \quad t = \frac{3 \pm 3\sqrt{13}}{2} \]

 We reject the solution with the minus sign since \(\frac{3 - 3\sqrt{13}}{2} < 0 \)

 Therefore, the ball hits the ground after \(\frac{3 + 3\sqrt{13}}{2} \approx 6.9 \text{ sec.} \).