§ 4.1 Maximum and Minimum Values

Def

1. (a) A function \(f \) has an **absolute maximum** (or **global maximum**) at \(x = c \) if \(f(c) \geq f(x) \) for all \(x \) in \(D_f \)

 The number \(f(c) \) is called the **maximum value** of \(f \) on \(D_f \)

1. (b) \(f \) has an **absolute minimum** (or **global minimum**) at \(x = c \) if \(f(c) \leq f(x) \) for all \(x \) in \(D_f \)

 The number \(f(c) \) is called the **minimum value** of \(f \) on \(D_f \)

The maximum and minimum values of \(f \) are called the **extreme values** of \(f \)

2. (a) A function \(f \) has a **local maximum** (or **relative maximum**) at \(x = c \) if \(f(c) \geq f(x) \) when \(x \) is near \(c \) (for all \(x \) in some open interval containing \(c \))

 The number \(f(c) \) is called the **local maximum value** of \(f \)

2. (b) \(f \) has a **local minimum** (or **relative minimum**) at \(x = c \) if \(f(c) \leq f(x) \) when \(x \) is near \(c \)

 The number \(f(c) \) is called the **local minimum value** of \(f \)
\(f(x) \) has an **absolute maximum** at \(x = e \), the absolute maximum value = \(f(e) \)

\(f(x) \) has an **absolute minimum** at \(x = a \), the absolute minimum value = \(f(a) \)

\(f(x) \) has a **local maximum** at \(x = c \), the local maximum value = \(f(c) \)

\(f(x) \) has a **local maximum** at \(x = e \), the local maximum value = \(f(e) \)

\(f(x) \) has a **local minimum** at \(x = d \), the local minimum value = \(f(d) \)

\(f(x) \) has a **local minimum** at \(x = l \), the local minimum value = \(f(l) \)

The absolute minimum is not a local minimum because it occurs at an endpoint.
[Ex1] The function $f(x) = \cos x$ takes on its (local and absolute) maximum value of 1 infinitely many times. It also takes on its (local and absolute) minimum value of -1 infinitely many times.

[Ex2] $f(x) = x^2$ has an absolute (and local) minimum value $f(0) = 0$, and it has no maximum value.

The Extreme Value Theorem (極值定理)

If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some numbers c and d in $[a, b]$.
If \(f \) is not continuous on the closed interval \([a,b]\), it may not have extreme values. (as shown below)

\(f \) has an absolute minimum value \(= f(b) \), but no maximum value.

This continuous function \(g \) has no extreme values.

Def

A critical number of a function \(f \) is a number \(c \in D_f \) such that either \(f'(c) = 0 \) or \(f'(c) \) does not exist.

[Ex] If \(f(x) = x^3 \) then \(f'(x) = 3x^2 \). \(f'(x) = 0 \) \(\iff 3x^2 = 0 \) \(\iff x = 0 \)

\[\therefore x = 0 \] is a critical number of \(f \)

[Ex] \(x = 0 \) is the critical number of \(f(x) = |x| \) since \(f'(0) \) does not exist.
[Ex7] Find the critical numbers of \(f(x) = x^3 (4-x) \)

[Sol]:

\[
\begin{align*}
 f'(x) &= \frac{3}{5} x^{-\frac{2}{5}} (4-x) + \frac{3}{5} x^{-\frac{3}{5}} (-1) \\
 &= \frac{3(4-x) - 5x}{5x^{\frac{2}{5}}} \\
 &= \frac{12 - 8x}{5x^{\frac{2}{5}}}
\end{align*}
\]

\[
f'(x) = 0 \iff 12 - 8x = 0 \iff x = \frac{3}{2}
\]

\[
f'(x) \text{ D.N.E} \iff x = 0
\]

Thus, the critical numbers are \(x = \frac{3}{2} \) and \(x = 0 \)

[Ex]

The critical numbers of \(f' \) are \(x = c, x = e, x = l \left(f'(x) = 0 \right) \) and \(x = d \left(f'(x) \text{ D.N.E} \right) \)

Note that the local maximum and minimum occur at these points.
Thm

If f has a local maximum or minimum at $x = c$, then c is a critical number of f.

The theorem asserts that every local maximum or minimum occur at a critical number. But, be careful! The converse 反敘述 is false!! That means it may happen that c is a critical number of f, but f has no local maximum or minimum at $x = c$.

[Ex] $f(x) = x^3$

$x = 0$ is a critical number of f since $f'(0) = 0$,

but there's no local maximum or minimum at $x = 0$

$f'(0) = 0$ simply means that the curve $y = x^3$

has a horizontal tangent at $x = 0$.

[Ex] $f(x) = \frac{1}{x^3}$

$x = 0$ is a critical number of f since $f'(0)$ D.N.E,

but f has no local maximum or minimum at $x = 0$.

Here, "$f'(0)$ D.N.E" simply means that the curve

$y = x^{\frac{1}{3}}$ has a vertical tangent at $x = 0$.
The Closed Interval Method （閉區間法）

To find the absolute maximum and minimum values of a continuous function f on a closed interval $[a, b]$

1. Find the values of f at the critical numbers of f in (a, b).
2. Find the values of f at the endpoints 端點 of the interval.
3. The largest of the values from step 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

[Ex8] Find the absolute maximum and minimum values of the function

$$f(x) = x^3 - 3x^2 + 1, \quad -\frac{1}{2} \leq x \leq 4$$

[Sol]: Since $f(x)$ is continuous on the closed interval $\left[-\frac{1}{2}, 4\right]$, we can use the Closed Interval Method

1. $f'(x) = 3x^2 - 6x = 3x(x - 2), \quad f'(x) = 0 \iff x = 0$ or $x = 2 \iff$ critical numbers

 $f'(0) = 1, \quad f'(2) = -3$

2. $f\left(-\frac{1}{2}\right) = \frac{1}{8}, \quad f(4) = 17$

3. the absolute maximum value $= f(4) = 17$

 the absolute minimum value $= f(2) = -3$
[Ex9] Find the absolute maximum and minimum values of the function

\[f(x) = x - 2 \sin x, \quad 0 \leq x \leq 2\pi \]

[Sol]:

1. \(f'(x) = 1 - 2 \cos x \),

 \[f''(x) = 0 \iff \cos x = \frac{1}{2} \iff x = \frac{\pi}{3} \text{ or } x = \frac{5\pi}{3} \]

 \[f\left(\frac{\pi}{3}\right) = \frac{\pi}{3} - 2 \sin \frac{\pi}{3} = \frac{\pi}{3} - \sqrt{3} < 0 \]

 \[f\left(\frac{5\pi}{3}\right) = \frac{5\pi}{3} - 2 \sin \frac{5\pi}{3} = \frac{5\pi}{3} + \sqrt{3} \approx 6.96 \]

2. \(f(0) = 0 \quad ; \quad f(2\pi) = 2\pi \approx 6.28 \)

3. the absolute maximum value = \(f\left(\frac{5\pi}{3}\right) = \frac{5\pi}{3} + \sqrt{3} \)

 the absolute minimum value = \(f\left(\frac{\pi}{3}\right) = \frac{\pi}{3} - \sqrt{3} \)
Find the absolute maximum and minimum of \(f(x) = |6 - 4x| \) on \([-3, 3]\)

[Sol]:

1. \(f'(x) = \begin{cases}
-4, & \text{when } x < \frac{3}{2} \\
4, & \text{when } x > \frac{3}{2}
\end{cases} \)

 \(f'(\frac{3}{2}) \) D.N.E.

 \(\therefore \frac{3}{2} \) is a critical number. \(f(\frac{3}{2}) = 0 \)

2. \(f(-3) = 18, \) \(f(3) = 6 \)

3. the absolute maximum = \(f(-3) = 18 \)

 the absolute minimum = \(f(\frac{3}{2}) = 0 \)
§ 4.2 The Mean Value Theorem (平均值定理)

Rolle’s Theorem（洛爾定理）

Let f be a function that satisfies the following three hypothesis:

1. f is continuous on the closed interval $[a, b]$.
2. f is differentiable on the open interval (a, b).
3. $f(a) = f(b)$

Then there is a number c in (a, b) such that $f'(c) = 0$

[Proof]:

Case 1: If $f(x) = k$ (a constant), then $f'(x) = 0 \ \forall x \in (a, b)$ [Fig. 1]

Case 2: If $f(x) > f(a)$ for some $x \in (a, b)$. [Fig. 2 and 3]

Since f is continuous on a closed interval, by the Extreme Value Theorem, f has a maximum value Somewhere in $[a, b]$. Because $f(a) = f(b)$, the maximum value must occurs at a number c in (a, b). That is, $f(c)$ is a local maximum value.

Since f is differentiable at c by hypothesis 2, we have $f'(c) = 0$
Case 3: If \(f(x) < f(a) \) for some \(x \in (a, b) \). [Fig. 4]

Similarly, \(f' \) has a minimum value in \([a, b]\).
Since \(f(a) = f(b) \), the minimum value must occurs at a number \(c \) in \((a, b)\). And therefore \(f(c) \) is a local minimum value.
Again, \(f'(c) = 0 \) since \(f' \) is differentiable at \(c \).

[Ex1]

Let \(s = f(t) \) stand for the position function of a moving object. If the object is in the same place at two different instants \(t = a \) and \(t = b \), then \(f(a) = f(b) \).
Rolle’s Theorem says there is some instant of time \(t = c \) between \(a \) and \(b \) such that \(f'(c) = 0 \), that is, the velocity is 0. \((v(c) = 0)\)
[Ex2] Prove that the equation \(x^3 + x - 1 = 0 \) has exactly one real root.

[Sol]:

(1) Let \(f(x) = x^3 + x - 1 \). Then \(f(0) = -1 < 0 \) and \(f(1) = 1 > 0 \)
Since \(f \) is a polynomial, \(f \) is continuous on \([0, 1]\)
By the Intermediate Value Theorem, there is a number \(c \in (a, b) \) such that \(f(c) = 0 \). Thus, the equation has a root.

(2) To show that the equation has exactly one root, we use Rolle’s Theorem and argue by contradiction. Suppose that the equation had two roots \(a \) and \(b \), then \(f(b) = f(a) = 0 \). Besides, since \(f \) is a polynomial, it is differentiable on \((a, b)\) and continuous on \([a, b]\). Thus, by Rolle’s Theorem, there exists a number \(c \in (a, b) \) s.t. \(f'(c) = 0 \). But \(f'(x) = 3x^2 + 1 \geq 1 \) for all \(x \), so, \(f'(x) \) can never be 0.
This gives a contradiction. Therefore, the equation can’t have two real roots.
That is, it has exactly one root.
The Mean Value Theorem

Let \(f \) be a function that satisfies the following hypotheses:

1. \(f \) is continuous on the closed interval \([a, b]\)
2. \(f \) is differentiable on the open interval \((a, b)\)

Then there is a number \(c \) in \((a, b)\) such that

\[
f'(c) = \frac{f(b) - f(a)}{b - a} \quad \text{or} \quad f(b) - f(a) = f'(c)(b - a)
\]
The equation of the secant line AB is

$$y - f(a) = \frac{f(b) - f(a)}{b - a}(x - a)$$

or

$$y = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

Let $h(x) = f(x) - \left[f(a) + \frac{f(b) - f(a)}{b - a}(x - a) \right]$.

Since $h(x)$ is the sum of f and a first-degree polynomial, both of which are continuous on $[a, b]$ and differentiable on (a, b), we know that $h(x)$ is also continuous on $[a, b]$ and differentiable on (a, b) and $h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$.

Besides, $h(a) = f(a) - \left[f(a) + \frac{f(b) - f(a)}{b - a}(a - a) \right] = 0$ and

$$h(b) = f(b) - \left[f(a) + \frac{f(b) - f(a)}{b - a}(b - a) \right] = 0 \quad \text{i.e.} \quad h(a) = h(b) = 0$$

Therefore, by Rolle's Theorem, there exists a number c in (a, b) such that

$$h'(c) = 0 \quad \text{that is,} \quad h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0 \quad \text{i.e.} \quad f'(c) = \frac{f(b) - f(a)}{b - a}$$
[Ex3] Consider \(f(x) = x^3 - x \), \(a = 0 \), \(b = 2 \)

[Sol]:

Since \(f \) is a polynomial, \(f' \) is continuous on \([0, 2]\) and differentiable on \((0, 2)\). Therefore, by Mean Value Theorem, there is a number \(c \in (0, 2) \) s.t. \(f(2) - f(0) = f'(c)(2 - 0) \).

Substitute \(f'(2) = 6 \), \(f(0) = 0 \) and \(f'(x) = 3x^2 - 1 \) into the equation, we get

\[
6 - 0 = (3c^2 - 1)(2 - 0)
\]

\[
\Rightarrow 6c^2 = 8 \Rightarrow c^2 = \frac{4}{3} \Rightarrow c = \pm \frac{2}{\sqrt{3}}
\]

But \(c \) must lie in \((0,2)\), so \(c = \frac{2}{\sqrt{3}} \)

The main significance 重要性 of the Mean Value Thm is that it enables us to obtain information about a function from information about its derivative.
[Ex5] Suppose that \(f(0) = -3 \) and \(f'(x) \leq 5 \) for all values of \(x \).
How large can \(f(2) \) possibly be?

[Sol]:

Since \(f'(x) \) exists for all \(x \), that is, \(f \) is differentiable and therefore continuous everywhere. In particular, we can apply the Mean Value Theorem on the interval \([0, 2]\).
There exists a number \(c \in (0, 2) \) s.t. \(f(2) - f(0) = f'(c)(2 - 0) \).
\[
\Rightarrow f(2) = f(0) + 2f'(c) = -3 + 2f'(c) \leq -3 + 2 \cdot 5 = 7
\]
The largest possible value for \(f(2) \) is 7.
Theorem 5
If \(f'(x) = 0 \) for all \(x \) in an interval \((a, b)\), then \(f \) is constant on \((a, b)\)

[Proof]:
Let \(x_1 \) and \(x_2 \) be any two numbers in \((a, b)\) with \(x_1 < x_2 \).
Since \(f \) is differentiable and therefore continuous on \((a, b)\), it must be differentiable on \((x_1, x_2)\) and continuous on \([x_1, x_2]\). By applying the Mean Value Theorem to \(f \) on the interval \([x_1, x_2]\), we know that there is a number \(c \) such that \(f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \).
Since \(f'(c) = 0 \), we have \(f(x_2) - f(x_1) = 0 \) i.e. \(f(x_2) = f(x_1) \)
Therefore, \(f \) has the same value at any two numbers in \((a, b)\).
This means \(f \) is constant on \((a, b)\).

Corollary 7
If \(f'(x) = g'(x) \) for all \(x \) in an interval \((a, b)\), then \(f - g \) is constant on \((a, b)\); that is, \(f(x) = g(x) + C \) where \(C \) is a constant.
[Proof]:

Let $F(x) = f(x) - g(x)$, then $F'(x) = f'(x) - g'(x) = 0$ for all x in (a, b).
Thus, by theorem 5, we conclude that F is constant. i.e. $f - g$ is constant.

[Ex6] Prove the identity $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$

[Sol]:

Let $f(x) = \tan^{-1} x + \cot^{-1} x$
then $f'(x) = \frac{1}{1 + x^2} - \frac{1}{1 + x^2} = 0$ for all x
Therefore, $f(x) = C$ where C is a constant.
To determine the value of C, we substitute 1 for x into the equation
$C = f(1) = \tan^{-1}(1) + \cot^{-1}(1) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$
Thus, $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$
§ 4.3 How Derivatives Affect the Shape of a Graph

導數如何影響圖形的形狀

Increasing / Decreasing Test (I / D Test) 遞增-遞減檢驗法

(a) If $f''(x) > 0$ on an interval, then f is increasing on that interval.
(b) If $f''(x) < 0$ on an interval, then f is decreasing on that interval.

[Proof]:

(1) Let x_1 and x_2 be any two numbers in the interval with $x_1 < x_2$.
Since f is differentiable (and therefore continuous) on that interval,
we know f is differentiable on (x_1, x_2) and continuous on $[x_1, x_2]$.
So by the Mean Value Theorem, there is a number $c \in (x_1, x_2)$ s.t.

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1) > 0 \quad (\because f'(c) > 0 \text{ and } x_2 - x_1 > 0)$$

i.e. $f(x_2) > f(x_1)$

(2) Part (b) is proved similarly.
[Ex1] Find where the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and where it is decreasing?

[Sol]:

$$f'(x) = 12x^3 - 12x^2 - 24x = 12x(x^2 - x - 2)$$

$$f'(x) = 0 \iff x = 0, 2, -1$$

<table>
<thead>
<tr>
<th>Interval</th>
<th>$x<1$</th>
<th>$-1 < x < 0$</th>
<th>$0 < x < 2$</th>
<th>$x > 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f''(x)$</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>$f'(x)$</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
</tbody>
</table>

So f is increasing (↗) on $(-1, 0)$ and $(2, \infty)$

and it is decreasing (↘) on $(-\infty, -1)$ and $(0, 2)$
The First Derivative Test

Suppose that $x = c$ is a critical number of a continuous function f.

(a) If f' changes from positive to negative at $x = c$, then f has a local maximum at $x = c$.

(b) If f' changes from negative to positive at $x = c$, then f has a local minimum at $x = c$.

(c) If f' does not change sign at $x = c$, then f has no local maximum or minimum at $x = c$.
[Ex2] Find the local maximum and minimum values of the function f in Ex1.

[Sol]:

(1) Since $f' < 0$ when $x < -1$ and $f' > 0$ when $-1 < x < 0$
 $f(-1) = 0$ is a local minimum value
(2) Since $f' > 0$ when $-1 < x < 0$ and $f' < 0$ when $0 < x < 2$
 $f(0) = 5$ is a local maximum value
(3) Since $f' < 0$ when $0 < x < 2$ and $f' > 0$ when $x > 2$
 $f(2) = -27$ is a local minimum value
[Ex3] Find the local maximum and minimum values of the function

\(g(x) = x + 2 \sin x \), \(0 \leq x \leq 2\pi \)

[Sol]: \(g'(x) = 1 + 2 \cos x \)

\(g'(x) = 0 \iff \cos x = -\frac{1}{2} \iff x = \frac{2\pi}{3}, \frac{4\pi}{3} \leftarrow \text{critical numbers} \)

<table>
<thead>
<tr>
<th>Interval</th>
<th>(0 < x < \frac{2\pi}{3})</th>
<th>(\frac{2\pi}{3} < x < \frac{4\pi}{3})</th>
<th>(\frac{4\pi}{3} < x < 2\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g'(x))</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>(g(x))</td>
<td>↗</td>
<td>↘</td>
<td>↗</td>
</tr>
</tbody>
</table>

By the First Derivative Test

the local maximum value = \(g\left(\frac{2\pi}{3}\right) = \frac{2\pi}{3} + 2 \sin \frac{2\pi}{3} = \frac{2\pi}{3} + 2\left(\frac{\sqrt{3}}{2}\right) = \frac{2\pi}{3} + \sqrt{3} \)

the local minimum value = \(g\left(\frac{4\pi}{3}\right) = \frac{4\pi}{3} + 2 \sin \frac{4\pi}{3} = \frac{4\pi}{3} + 2\left(-\frac{\sqrt{3}}{2}\right) = \frac{4\pi}{3} - \sqrt{3} \)
What Does f'' Say about f?

Def

1. If the graph of f' lies above all of its tangent lines on an interval I, then it is called **concave upward** 上凹 (CU) on I.
2. If the graph of f' lies below all of its tangent lines on an interval I, then it is called **concave downward** 下凹 (CD) on I.

Concavity Test 凹性検驗法

(a) If $f''(x) > 0$ for all x in I, then the graph of f is concave upward (CU) on I.
(b) If $f''(x) < 0$ for all x in I, then the graph of f is concave downward (CD) on I.
Def
A point P on the curve $y = f(x)$ is called an *inflection point* 反曲點 if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.

[Ex5] Sketch a possible graph of a function f that satisfies the following conditions

(i) $f'(x) > 0$ on $(-\infty, 1)$, $f'(x) < 0$ on $(1, \infty)$

(ii) $f''(x) > 0$ on $(-\infty, -2)$ and $(2, \infty)$, $f''(x) < 0$ on $(-2, 2)$

(iii) $\lim_{x \to -\infty} f(x) = -2$, $\lim_{x \to \infty} f(x) = 0$

[Sol]:
By (i), we know that $f \nearrow$ on $(-\infty, 1)$ and \searrow on $(1, \infty)$

By (ii), we know that f is CU on $(-\infty, -2)$ and $(2, \infty)$ and f is CD on $(-2, 2)$

By (iii), we know that $y = -2$ and $y = 0$ are horizontal asymptotes of $y = f(x)$
The Second Derivative Test

Suppose f'' is continuous near c

(a) If $f'(c) = 0$ and $f''(c) > 0$, then f has a local minimum at $x = c$.

(b) If $f'(c) = 0$ and $f''(c) < 0$, then f has a local maximum at $x = c$.

[Ex6] Discuss the curve $y = x^4 - 4x^3$ w.r.t. concavity, points of inflection, and local maximum or minimum. Use this information to sketch the curve.

[Sol]:

If $f(x) = x^4 - 4x^3$, then $f'(x) = 4x^3 - 12x^2 = 4x^2(x - 3)$

and $f''(x) = 12x^2 - 24x = 12x(x - 2)$.

Therefore, $f'(x) = 0 \Rightarrow x = 0, x = 3$ (critical numbers)

Since $f''(3) = 36 > 0$, $f(3) = -27$ is a local minimum

Since $f''(0) = 0$, the Second Derivative Test gives no information about the critical number 0.

But, by the First Derivative Test, since $f'(x) < 0$ for $x < 0$ and $0 < x < 3$, f has no local maximum or minimum at 0.

Set $f''(x) = 0 \iff x = 0, x = 2$
Therefore, the inflection points are (0,0) and (2,−16)

<table>
<thead>
<tr>
<th></th>
<th>$x<0$</th>
<th>$0<x<2$</th>
<th>$x>2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f''(x)$</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>$f'(x)$</td>
<td>CU</td>
<td>CD</td>
<td>CU</td>
</tr>
</tbody>
</table>

Note: (1) The Second Derivative Test is inconclusive 沒有結論的 when $f''(c) = 0$. It gives no information about the critical number c if $f''(c) = 0$.
So when $f'(c) = 0$ and $f''(c) = 0$ → Use the First Derivative Test.

(2) The Second Derivative Test fails when $f'(c)$ D.N.E → Use the First Derivative Test.
[Ex7] Sketch the graph of the function $f(x) = x^3 (6 - x)^3$

[Sol]:

$$f'(x) = -\frac{4 - x}{x^3 (6 - x)^2}$$

$$f'(x) = 0 \iff x = 4$$

$$f'(x) \text{ D.N.E } \iff x = 0, x = 6$$

$\therefore x = 0, 4, 6$ are critical numbers

<table>
<thead>
<tr>
<th>$x<0$</th>
<th>$0<x<4$</th>
<th>$4<x<6$</th>
<th>$x>6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f'(x)$</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>$f(x)$</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>

$\therefore f(0) = 0$ is a local minimum

$$f(4) = 2^\frac{5}{3}$$ is a local maximum

$f(x)$ has no local maximum or minimum at $x = 6$.

$f''(x) = -\frac{8}{x^3 (6 - x)^3}$

$f''(x)$ D.N.E $\iff x = 0, x = 6$

<table>
<thead>
<tr>
<th>$x<0$</th>
<th>$0<x<6$</th>
<th>$x>6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f''(x)$</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>$f(x)$</td>
<td>CD</td>
<td>CD</td>
</tr>
</tbody>
</table>

\therefore the point of inflection is $(6,0)$
[Ex8] Use the first and second derivative of \(f(x) = e^{\frac{1}{x}} \), together with asymptotes, to sketch its graph.

[Sol]:

(1) \(f'(x) = -\frac{e^x}{x^2} \)

\(f'(x) \) D.N.E \(\iff \) \(x = 0 \)

\[
\begin{array}{c|cc}
 f'(x) & x<0 & x>0 \\
 \downarrow & - & - \\
 f(x) & \downarrow & \downarrow \\
\end{array}
\]

\(\therefore \) \(f \) has no local maximum or minimum

(2) \(f''(x) = \frac{e^x(2x+1)}{x^4} \)

\(f''(x) = 0 \iff x = -\frac{1}{2} \)

\(f''(x) \) D.N.E \(\iff x = 0 \)

\[
\begin{array}{c|ccc}
 f''(x) & x < -\frac{1}{2} & -\frac{1}{2} < x < 0 & x > 0 \\
 & - & + & + \\
 f(x) & CD & CU & CU \\
\end{array}
\]

\(\therefore \) the inflection point is \(\left(-\frac{1}{2}, e^{-2} \right) \)
(3) \[\lim_{x \to 0^+} e^x = \infty \quad \therefore x = 0 \text{ is a vertical asymptote} \]

\[
\left\{
\begin{array}{c}
\lim_{x \to 0^-} e^x = 0 \\
\end{array}
\right\}
\]

\[\lim_{x \to \pm\infty} e^{-x} = e^0 = 1 \quad \therefore y = 1 \text{ is a horizontal asymptote} \]
§ 4.4 Indeterminate Forms and L’Hospital’s Rule
不定型與洛必達法則

If \(\lim_{x \to a} f(x) = 0 \) and \(\lim_{x \to a} g(x) = 0 \), then the limit \(\lim_{x \to a} \frac{f(x)}{g(x)} \) is called an indeterminate form of type \(\frac{0}{0} \).

If \(\lim_{x \to a} f'(x) = \infty \) (or \(-\infty \)) and \(\lim_{x \to a} g(x) = \infty \) (or \(-\infty \)), then the limit \(\lim_{x \to a} \frac{f(x)}{g(x)} \) is called an indeterminate form of type \(\frac{\infty}{\infty} \).

L’Hospital’s Rule

Suppose \(f \) and \(g \) are differentiable and \(g'(x) \neq 0 \) near \(a \) (except possibly at \(a \)).

Suppose that \(\lim_{x \to a} \frac{f(x)}{g(x)} \) is an indeterminate form of type \(\frac{0}{0} \) or \(\frac{\infty}{\infty} \).

Then \(\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \) if the limit \(\lim_{x \to a} \frac{f'(x)}{g'(x)} \) exist (or is \(\infty \) or \(-\infty \)).
Vote 1: It is especially important to verify the conditions regarding the limits of \(f \) and \(g \) before using L’Hospital’s Rule.

Vote 2: L’Hospital’s Rule also valid for one-sided limit and for limits at infinity or negative infinity; that is, "\(x \to a \)" can be replace by \(x \to a^+ \), \(x \to a^- \), \(x \to \infty \) or \(x \to -\infty \).

[Ex1] Find \(\lim_{x \to 1} \frac{\ln x}{x - 1} \)

[Sol]:

The limit is an indeterminate form of type \(\frac{0}{0} \), we can apply L’Hospital’s Rule:

\[
\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(x - 1)} = \lim_{x \to 1} \frac{1}{1} = 1
\]
[Ex2] Calculate \(\lim_{x \to \infty} \frac{e^x}{x^2} \)

[Sol]:

The limit is an indeterminate form of type \(\frac{\infty}{\infty} \), we can apply L’Hospital’s Rule:

\[
\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(x^2)} = \lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^x)}{\frac{d}{dx}(2x)} = \lim_{x \to \infty} \frac{e^x}{2} = \infty
\]

\(\lim_{x \to \infty} \frac{e^x}{2x} \) is still an indeterminate form of type \(\frac{\infty}{\infty} \)

so use the L’Hospital’s Rule again

[Ex3] Calculate \(\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}} \)

[Sol]: Apply L’Hospital’s Rule to it because it’s an indeterminate form of type \(\frac{\infty}{\infty} \)

\[
\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}} = \lim_{x \to \infty} \frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(\sqrt[3]{x})} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{3x^{\frac{2}{3}}}} = \lim_{x \to \infty} \frac{3}{x^{\frac{2}{3}}} = 0
\]
[Ex4] Find \(\lim_{x \to 0} \frac{\tan x - x}{x^3} \)

[Sol]:
It’s of the type \(\frac{0}{0} \), so we can apply L’Hospital’s Rule:

\[
\lim_{x \to 0} \frac{\tan x - x}{x^3} = \lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2} = \lim_{x \to 0} \frac{2\sec x \cdot \sec x \tan x}{6x} = \frac{1}{3} \lim_{x \to 0} \sec^2 x \cdot \frac{\sin x}{\cos x} \cdot \frac{1}{x}
\]

\[
= \frac{1}{3} \lim_{x \to 0} \sec^2 x \cdot \frac{\sin x}{x} \cdot \frac{1}{\cos x} = \frac{1}{3} \cdot 1 \cdot 1 \cdot 1 = \frac{1}{3}
\]

[Ex5] Find \(\lim_{x \to \infty} \frac{x}{x + \sin x} \)

[Sol]:

\[
\lim_{x \to \infty} \frac{x}{x + \sin x} \neq \lim_{x \to \infty} \frac{1}{1 + \cos x}
\]

the limit does not exist.

\[
\lim_{x \to \infty} \frac{x}{x + \sin x} = \lim_{x \to \infty} \frac{x}{x + \sin x} = \lim_{x \to \infty} \frac{1}{1 + \frac{\sin x}{x}} = 1
\]
Indeterminate Products 不定乗積

If \(\lim_{x \to a} f(x) = 0 \) and \(\lim_{x \to a} g(x) = \infty \) (or \(-\infty \)), then the limit \(\lim_{x \to a} f(x)g(x) \) is called an indeterminate form of type \(0 \cdot \infty \).

\[
\lim_{x \to a} f(x)g(x) = \begin{cases}
\lim_{x \to a} \frac{f(x)}{g(x)} & \text{← indeterminate form of type } \frac{0}{0} \\
\lim_{x \to a} \frac{g(x)}{f(x)} & \text{← indeterminate form of type } \frac{\infty}{\infty}
\end{cases}
\]

[Ex6] Evaluate \(\lim_{x \to 0^+} x \cdot \ln x \)

[Sol]:

Since \(\lim_{x \to 0^+} x = 0 \) and \(\lim_{x \to 0^+} \ln x = -\infty \), the limit is an indeterminate form of type \(0 \cdot \infty \).

Using L’Hôpital’s Rule, (but converting the limit into the form of type \(\frac{0}{0} \) or \(\frac{\infty}{\infty} \) first), we have

\[
\lim_{x \to 0^+} x \cdot \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{d}{dx} \left(\frac{1}{x} \right) = -\lim_{x \to 0^+} \frac{1}{x^2} = \lim_{x \to \infty} -\frac{1}{x^2} = 0
\]
If \(\lim_{x \to a} f(x) = \infty \) and \(\lim_{x \to a} g(x) = \infty \), then the limit \(\lim_{x \to a} [f(x) - g(x)] \) is called an indeterminate form of type \(\infty - \infty \).

In this case, we try to convert the difference into a quotient so that we have an indeterminate form of type \(\frac{0}{0} \) or \(\infty \).

[Ex7] Compute \(\lim_{x \to \left(\frac{\pi}{2}\right)^-} (\sec x - \tan x) \)

[Sol]:

This is an indeterminate form of \(\infty - \infty \). We’ll try to convert the difference into a quotient.

\[
\lim_{x \to \left(\frac{\pi}{2}\right)^-} (\sec x - \tan x) = \lim_{x \to \left(\frac{\pi}{2}\right)^-} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right) = \lim_{x \to \left(\frac{\pi}{2}\right)^-} \frac{1 - \sin x}{\cos x} = \lim_{x \to \left(\frac{\pi}{2}\right)^-} \frac{-\cos x}{-\sin x} = 0
\]

(indeterminate form of type \(\frac{0}{0} \))
Indeterminate Powers

If \(\lim_{x \to a} f(x) = 0 \) and \(\lim_{x \to a} g(x) = 0 \), then the limit \(\lim_{x \to a} [f(x)]^{g(x)} \) is called an **indeterminate form of type** \(0^0 \).

If \(\lim_{x \to a} f(x) = \infty \) and \(\lim_{x \to a} g(x) = 0 \), then the limit \(\lim_{x \to a} [f(x)]^{g(x)} \) is called an **indeterminate form of type** \(\infty^0 \).

If \(\lim_{x \to a} f(x) = 1 \) and \(\lim_{x \to a} g(x) = \pm\infty \), then the limit \(\lim_{x \to a} [f(x)]^{g(x)} \) is called an **indeterminate form of type** \(1^\infty \).

In these cases, we’ll write the function \([f(x)]^{g(x)} \) as an exponential:

\[
[f(x)]^{g(x)} = e^{\ln(f(x))^{g(x)}} = e^{g(x)\ln f(x)}
\]

[Ex9] Find \(\lim_{x \to 0^+} x^x \)

[Sol]: It’s an indeterminate form of type \(0^0 \)

\[
\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{\ln x^x} = \lim_{x \to 0^+} e^{x\ln x} = e^{\lim_{x \to 0^+} x\ln x} = e^0 = 1
\]

(\(\because e^x \) is continuous and \(\lim_{x \to 0} x \cdot \ln x = 0 \) exists by ex6)
[Ex8] Calculate \(\lim_{x \to 0^+} (1 + \sin 4x)^{\cot x} \)

[Sol]:

This is an indeterminate form of type \(1^\infty\)

\[
\lim_{x \to 0^+} (1 + \sin 4x)^{\cot x} = \lim_{x \to 0^+} e^{\ln(1 + \sin 4x)^{\cot x}} = \lim_{x \to 0^+} e^{\cot x \cdot \ln(1 + \sin 4x)}
\]

Since \(\lim_{x \to 0^+} \cot x \cdot \ln(1 + \sin 4x) = \lim_{x \to 0^+} \frac{\ln(1 + \sin 4x)}{\tan x} = \lim_{x \to 0^+} \frac{\cos 4x \cdot 4}{1 + \sin 4x} = 4 \)

we have that \(\lim_{x \to 0^+} (1 + \sin 4x)^{\cot x} = \lim_{x \to 0^+} e^{\cot x \cdot \ln(1 + \sin 4x)} \)

\[
= e^{\lim_{x \to 0^+} \cot x \cdot \ln(1 + \sin 4x)} = e^{4} \quad (\because e^x \text{ is a continuous function})
\]
§ 4.5 Summary of Curve Sketching

Guidelines for Sketching a Curve: (描繪曲線的方法）

A. **Domain** (定義域)

B. **Intercepts** (截距)

C. **Symmetry**: (i) \(f(-x) = f(x) \) \(\iff \) \(f \) is an **even function**

\(\iff \) the graph of \(f \) is symmetric about the \(y \)-axis.

(ii) \(f(-x) = -f(x) \) \(\iff \) \(f \) is an **odd function**

\(\iff \) the graph of \(f \) is symmetric about the origin.

(iii) \(f(x + p) = f(x) \) for all \(x \in D_f \), where \(p \) is a positive integer

\(\iff \) \(f \) is a **periodic function** (週期函數)

D. **Asymptotes**: find **vertical asymptotes or horizontal asymptotes or slant asymptotes**

\(\iff \) the line \(y = ax + b \) is called a **slant asymptote**.

[Ex] If \(f(x) = x + \frac{1}{x} \), then \(\lim_{x \to \infty} \left[f(x) - x \right] = \lim_{x \to \infty} \frac{1}{x} = 0 \).

Therefore \(y = x \) is a slant asymptote of \(y = f(x) \)
E. **Intervals of Increase or Decrease** (遞增或遞減區間)

F. **Local Maximum and Minimum Values** (局部極大或極小值)

G. **Concavity and Points of Inflection** (凹性與反曲點)

H. **Sketch the Curve**

[Ex1] Sketch the curve \(y = \frac{2x^2}{x^2 - 1} \)

[Sol]:

Let \(f(x) = \frac{2x^2}{x^2 - 1} \)

A. \(D_f = \{ x | x \neq \pm 1 \} = (-\infty, -1) \cup (-1, 1) \cup (1, \infty) \)

B. The \(x \)-intercept = 0 and the \(y \)-intercept = 0

C. **Symmetry**

Since \(f(-x) = f(x) \), \(f \) is even. The curve is symmetric about the \(y \)-axis.

D. **Asymptotes**

\[
\lim_{x \to 1^+} f(x) = \infty, \quad \lim_{x \to 1^-} f(x) = -\infty, \quad \lim_{x \to -1^+} f(x) = -\infty, \quad \lim_{x \to -1^-} f(x) = \infty
\]

\[
\therefore x = 1 \text{ and } x = -1 \text{ are vertical asymptotes of the curve } y = \frac{2x^2}{x^2 - 1}
\]

\[
\lim_{x \to \pm \infty} f(x) = 2 \quad \therefore y = 2 \text{ is the horizontal asymptotes of the curve.}
\]
E. Intervals of Increase or Decrease

\[f'(x) = \frac{4x(x^2 - 1) - 2x^2 \cdot 2x}{(x^2 - 1)^2} = \frac{-4x}{(x^2 - 1)^2} \], \quad f'(x) = 0 \iff x = 0 \text{ (critical number)}

<table>
<thead>
<tr>
<th>Interval</th>
<th>(x < 0, x \neq -1)</th>
<th>(x > 0, x \neq 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>(f(x))</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>

F. The local maximum value = \(f(0) = 0 \)

G. Concavity and Points of Inflection

\[f''(x) = \frac{-4(x^2 - 1)^2 - (-4x) \cdot 2(x^2 - 1) \cdot 2x}{(x^2 - 1)^4} = \frac{12x^2 + 4}{(x^2 - 1)^3} \]

\(f''(x) \) D.N.E. \iff \(x^2 - 1 = 0 \iff x = \pm 1 \)
There is no inflection point because $x = \pm 1$ are not in the domain of f.

<table>
<thead>
<tr>
<th></th>
<th>$x < -1$</th>
<th>$-1 < x < 1$</th>
<th>$x > 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f''(x)$</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>$f(x)$</td>
<td>CU</td>
<td>CD</td>
<td>CU</td>
</tr>
</tbody>
</table>

\[y = \frac{2x^2}{x^2 - 1} \]
[Ex2] Sketch the graph of \(f(x) = 5(x-1)^{\frac{2}{3}} - 2(x-1)^{\frac{5}{3}} \)

[Sol]:

A. \(D_f = \Re \)

B. Intercepts:

\[y = 5(x-1)^{\frac{2}{3}} - 2(x-1)^{\frac{5}{3}} \quad \text{when } x = 0, \ y = 7 \]
\[\quad \text{when } y = 0, \ (x-1)^{\frac{2}{3}} [5 - 2(x-1)] = 0 \Rightarrow x = 1 \text{ or } \frac{7}{2} \]

C. Symmetry: None

D. Asymptote: None

E. Intervals of Increase or Decrease

\[f''(x) = \frac{10(2-x)}{3(x-1)^{\frac{4}{3}}}, \ f''(x) = 0 \Leftrightarrow x = 2 \]

\[f''(x) \ D.N.E \Leftrightarrow x = 1. \]

\[
\begin{array}{c|c|c|c}
& x<1 & 1<x<2 & x>2 \\
f'(x) & + & - & - \\
f(x) & \text{CU} & \text{CD} & \text{CU} \\
\end{array}
\]

F. The local maximum value = \(f(2) = 3 \)
 The local minimum value = \(f(1) = 0 \)
G. Concavity and Points of Inflection

\[f''(x) = \frac{10(1-2x)}{9(x-1)^3}, \quad f''(x) = 0 \iff x = \frac{1}{2} \]

\[f''(x) \text{ D.N.E. } \iff x = 1 \]

<table>
<thead>
<tr>
<th></th>
<th>(-\infty < x < \frac{1}{2})</th>
<th>(\frac{1}{2} < x < 1)</th>
<th>(x > 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f''(x))</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(f(x))</td>
<td>CU</td>
<td>CD</td>
<td>CD</td>
</tr>
</tbody>
</table>

\[\therefore \text{ the inflection point is } \left(\frac{1}{2}, 3\sqrt{2} \right) \]
[Ex3] Sketch the graph of \(f(x) = xe^x \)

[Sol]:
A. \(D_f = \mathbb{R} \)
B. The \(x \)-intercept and \(y \)-intercept are both 0.
C. Symmetry: None
D. Asymptotes:
\[
\lim_{x \to \infty} xe^x = \infty \quad \lim_{x \to -\infty} xe^x = 0
\]
\[\therefore y = 0 \text{ is the horizontal asymptote}\]
E. Intervals of Increase or Decrease
\[
f'(x) = xe^x + e^x = (x + 1)e^x
\]
\[
f'(x) = 0 \iff x = -1
\]
\[
\begin{array}{c|cc}
 & -\infty < x < -1 & -1 < x < \infty \\
f'(x) & - & + \\
f(x) & \downarrow & \uparrow
\end{array}
\]
F. The local min. value \(f(-1) = -\frac{1}{e} \)
There’s no local maximum

G. \(f''(x) = (x + 1)e^x + e^x = (x + 2)e^x \)
\[
f''(x) = 0 \iff x = -2
\]

\[
\begin{array}{c|c|c}
 & -\infty < x < -2 & -2 < x < \infty \\
f''(x) & - & + \\
f(x) & \text{CD} & \text{CU}
\end{array}
\]
\[\therefore \text{the inflection point is } (-2, -2e^{-2})\]
[Ex4] Sketch the graph of \(f(x) = 2\cos x + \sin 2x \)

[Sol]:

A. \(D_f = \mathbb{R} \)

B. the \(y \)-intercepts is \(f(0) = 2 \)

 the \(x \)-intercepts: \(2\cos x + \sin 2x = 0 \Rightarrow 2\cos x(1 + \sin x) = 0 \)

 \(\Rightarrow \cos x = 0 \) or \(\sin x = -1 \)

 \(\Rightarrow x = \frac{\pi}{2} \) or \(x = \frac{3\pi}{2} \) (in \([0, 2\pi]\))

C. \(f \) is neither odd nor even, but \(f(x + 2\pi) = f(x) \) for all \(x \). Therefore \(f \) is a periodic function with period \(2\pi \). We may consider only \(0 \leq x \leq 2\pi \).

D. Asymptote: None

E. \(f''(x) = -2\sin x + 2\cos 2x = -2\sin x + 2(1 - 2\sin^2 x) \)

\[= -2(2\sin^2 x + \sin x - 1) = -2(\sin x + 1)(2\sin x - 1) \]

\(f''(x) = 0 \Leftrightarrow \sin x = -1 \) or \(\sin x = \frac{1}{2} \)

\(\Rightarrow \) in \([0, 2\pi]\), \(x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2} \)
\[
\begin{array}{|c|c|c|c|c|}
\hline
& \quad \quad \quad -\infty < x < \frac{\pi}{6} & \quad \quad \quad \frac{\pi}{6} < x < \frac{5\pi}{6} & \quad \quad \quad \frac{5\pi}{6} < x < \frac{3\pi}{2} & \quad \quad \quad \frac{3\pi}{2} < x < \infty \\
\hline
f'(x) & + & - & + & + \\
\hline
f(x) & \uparrow & \downarrow & \uparrow & \uparrow \\
\hline
\end{array}
\]

\[f'(x) = -2 \cos x (1 + 4 \sin x)\]

\[f''(x) = 0 \iff \cos x = 0 \text{ or } \sin x = -\frac{1}{4} \Rightarrow x = \frac{\pi}{2}, \frac{3\pi}{2}, \alpha_1, \alpha_2\]

where \(\alpha_1 = \pi + \sin^{-1} \left(\frac{1}{4} \right)\)

\(\alpha_2 = 2\pi - \sin^{-1} \left(\frac{1}{4} \right)\)
H. We draw the curve on $[0, 2\pi]$ first, then extend the curve by translation.

<table>
<thead>
<tr>
<th>Interval</th>
<th>$0 < x < \frac{\pi}{2}$</th>
<th>$\frac{\pi}{2} < x < \alpha_1$</th>
<th>$\alpha_1 < x < \frac{3\pi}{2}$</th>
<th>$\frac{3\pi}{2} < x < \alpha_2$</th>
<th>$\alpha_2 < x < 2\pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f''(x)$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>$f(x)$</td>
<td>CD</td>
<td>CU</td>
<td>CD</td>
<td>CU</td>
<td>CD</td>
</tr>
</tbody>
</table>

The inflection points are $(\frac{\pi}{2}, 0), (\alpha_1, f(\alpha_1)), (\frac{3\pi}{2}, 0), (\alpha_2, f(\alpha_2))$.
[Ex5] Sketch the graph of $y = \ln(4 - x^2)$

[Sol]:

Let $f(x) = \ln(4 - x^2)$

A. $D_f = \{ x \mid 4 - x^2 > 0 \} = \{ x \mid -2 < x < 2 \} = (-2, 2)$

B. the y-intercepts is $f'(0) = \ln 4$

the x-intercepts: $\ln(4 - x^2) = 0 \Rightarrow 4 - x^2 = 1 \Rightarrow x = \pm \sqrt{3}$

C. Symmetry:

$\therefore f(-x) = f(x) \therefore f$ is an even function

The curve is symmetric about y-axis.

D. Asymptote:

$\lim_{x \to 2^-} \ln(4 - x^2) = -\infty$; $\lim_{x \to 2^+} \ln(4 - x^2) = -\infty$

$\therefore x = 2$ and $x = -2$ are vertical asymptotes.

E. Intervals of Increase or Decrease

\[
f'(x) = \frac{-2x}{4 - x^2}
\]

\[
f''(x) = 0 \iff x = 0
\]

\[
\begin{array}{c|c|c}
& -2<x<0 & 0<x<2 \\
f'(x) & + & - \\
f''(x) & \uparrow & \downarrow \\
f(x) & & \\
\end{array}
\]
F. The local maximum value is $f(0) = \ln 4$.

G. Concavity and points of inflection

$$f''(x) = \frac{-2(4-x^2) - (-2x)(-2x)}{(4-x^2)^2} = \frac{-8-2x^2}{(4-x^2)^2}$$

Since $f''(x) < 0$ for all x in $(-2, 2)$.

The curve is CD on $(-2, 2)$ and there is no point of inflection.

H.
[Ex6] Sketch the graph of \(f(x) = \frac{x^3}{x^2 + 1} \)

[Sol]:

A. \(D_f = \mathbb{R} \)

B. The \(x \)-intercept and \(y \)-intercept are both 0.

C. Symmetry:

Since \(f(-x) = -f(x) \), \(f \) is odd and its graph is symmetric about the origin.

D. Asymptotes:

\[
\therefore f(x) = x - \frac{x}{x^2 + 1} \quad \therefore \lim_{x \to \pm\infty} \left(f(x) - x \right) = \lim_{x \to \pm\infty} \left(-\frac{x}{x^2 + 1} \right) = 0
\]

\[\therefore y = x \text{ is a slant asymptote.}\]

E. Intervals of Increase or Decrease

\[
f'(x) = \frac{x^2(x^2 + 3)}{(x^2 + 1)^2}
\]

Since \(f''(x) > 0 \) for all \(x \in \mathbb{R}, x \neq 0 \). \(f \) is increasing on \(\mathbb{R} \).

F. There’s no local maximum or minimum
G. Concavity and points of inflection

\[
f''(x) = \frac{2x(3-x^2)}{(x^2+1)^3}, \quad f''(x) = 0 \Leftrightarrow x = 0, \ x = \pm \sqrt{3}
\]

<table>
<thead>
<tr>
<th>(-\infty < x < -\sqrt{3})</th>
<th>(-\sqrt{3} < x < 0)</th>
<th>(0 < x < \sqrt{3})</th>
<th>(\sqrt{3} < x < \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f''(x))</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>CU</td>
<td>CD</td>
<td>CU</td>
</tr>
</tbody>
</table>

\[\therefore \] the inflection points are \(\left(-\sqrt{3}, -\frac{3\sqrt{3}}{4}\right), \ (0, 0), \ \left(\sqrt{3}, \frac{3\sqrt{3}}{4}\right) \)

H.
§ 4.7 Optimization Problems （最佳化問題）

[Ex1] A farmer has 2400 ft of fencing（圍繞）and wants to fence off a rectangular（矩形）field that borders（毗鄰）a straight river. He needs no fence along the river. What are the dimensions（尺寸, 寬度）of the field that has the largest area?

[Sol]:

Let x and y be the depth and width of the rectangle (in feet).

Then $A = xy$ and $2x + y = 2400 \Rightarrow y = 2400 - 2x$

$\Rightarrow A = x(2400 - 2x) = 2400x - 2x^2 , 0 \leq x \leq 1200$

We want to maximize A which is continuous on the closed interval $[0,1200]$

$A'(x) = 2400 - 4x , A'(x) = 0 \Leftrightarrow x = 600$ (critical number) $\Rightarrow A(600) = 720000$

$\therefore A(0) = 0 , A(1200) = 0$

$\therefore A(600) = 720000$ is the absolute maximum value of the area.

OR

$\therefore A' > 0$ when $x < 600$ and $A' < 0$ when $x > 600$.

$\therefore A \nearrow$ on $(0,600)$ and \searrow on $(600,1200)$

Therefore $A(600)$ is a local maximum value and also an absolute maximum value.

Thus, the rectangular field should be 600ft deep and 1200ft wide.
[Ex2] A cylindrical can (圆柱形罐头) is to be made to hold 1L of oil. Find the dimensions (尺寸) that will minimize the cost of the metal to manufacture the can.

[Sol]:
Suppose the can has radius r and height h (in centimeter 單位公分). In order to minimize the cost of the metal, we minimize the total surface area (表面面積) of the can.

$$A = 2\pi r^2 + 2\pi rh$$

The volume is given to be 1L ($= 1000cm^3$). Thus, $\pi r^2 h = 1000$

$$\Rightarrow h = \frac{1000}{\pi r^2}.$$ Substitution of this into the expression for A gives

$$A = 2\pi r^2 + 2\pi r \cdot \frac{1000}{\pi r^2} = 2\pi r^2 + \frac{2000}{r}, \quad r > 0.$$ To minimize A, we have to find the critical number first:

$$A' = 4\pi r - \frac{2000}{r^2} = \frac{4(\pi r^3 - 500)}{r^2}.$$ So $A' = 0 \Rightarrow r = \sqrt[3]{\frac{500}{\pi}}$

Since $A'(r) < 0$ when $r < \sqrt[3]{\frac{500}{\pi}}$ and $A'(r) > 0$ when $r > \sqrt[3]{\frac{500}{\pi}}$, we know that $A(r) \downarrow$ on $\left(0, \sqrt[3]{\frac{500}{\pi}}\right)$ and \uparrow on $\left(\sqrt[3]{\frac{500}{\pi}}, \infty\right)$.
Therefore, A has an absolute minimum at $r = \frac{\sqrt[3]{500}}{\pi}$.

The volume of h corresponding to $r = \frac{\sqrt[3]{500}}{\pi}$ is

$$h = \frac{1000}{\pi \left(\frac{\sqrt[3]{500}}{\pi}\right)^2} = 2 \frac{\sqrt[3]{500}}{\pi} = 2r \text{ (the diameter)}$$

Thus, the radius should be $\frac{\sqrt[3]{500}}{\pi}$ cm and the height should be equal to the diameter.
Find the point on the parabola $y^2 = 2x$ that is closest to the point $\left(1, 4\right)$.

[Sol]: The distance between the point $\left(1, 4\right)$ and the point $\left(x, y\right)$ is

$$d = \sqrt{(x-1)^2 + (y-4)^2}$$

Since (x, y) lies on the parabola, we have $y^2 = 2x \Rightarrow x = \frac{y^2}{2}$

$$\Rightarrow d = \sqrt{\left(\frac{1}{2}y^2 - 1\right)^2 + (y-4)^2} = \sqrt{\frac{1}{4}y^4 - 8y + 17}$$

Instead of minimizing d, we minimize $d^2 = \frac{1}{4}y^4 - 8y + 17$

Let $f(y) = \frac{1}{4}y^4 - 8y + 17 \Rightarrow f''(y) = y^3 - 8$, so $f''(y) = 0 \iff y = 2$.

Observe that $f' < 0$ when $y < 2$ and $f' > 0$ when $y > 2$, that is, f' on $(-\infty, 2)$ and f' on $(2, \infty)$. Therefore, f' has an absolute minimum at $y=2$.

The distance d also has an absolute minimum at $y=2$. When $y = 2$, $x = \frac{y^2}{2} = 2$.

Thus, the point on $y^2 = 2x$ closest to $(1, 4)$ is $(2, 2)$.
A man launches his boat from point A on a bank of a straight river, 3km wide, and wants to reach point B, 8km downstream on the opposite bank, as quickly as possible. He could row his boat directly across the river to point C and then run to B, or he could row directly to B, or he could row to some point D between C and B and then run to B. If he can row 6km/h and run 8km/h, where should he land to reach B as soon as possible? (We assume that the speed of the water is negligible compared with the speed at which the man rows.)

Let x be the distance from C to D, then the running distance is $|DB| = 8 - x$, and the rowing distance is $|AD| = \sqrt{x^2 + 9}$.

So the total time $T(x) = \frac{\sqrt{x^2 + 9}}{6} + \frac{8 - x}{8}$, $0 \leq x \leq 8$.

$$T'(x) = \frac{x}{6\sqrt{x^2 + 9}} - \frac{1}{8}$$

So $T'(x) = 0 \iff \frac{x}{6\sqrt{x^2 + 9}} = \frac{1}{8} \iff 4x = 3\sqrt{x^2 + 9} \iff 7x^2 = 81 \iff x = \frac{9}{\sqrt{7}}$ in $[0,8]$.

To find the point where the absolute minimum occur at, we compare the value of T at the critical number and the end points 0 and 8.
Therefore, the absolute minimum of \(T \) on the closed interval \([0,8]\) occur at \(x = \frac{9}{\sqrt{7}} \). Thus, the man should land the boat at a point \(\frac{9}{\sqrt{7}} \) km downstream from his starting point.
Find the area of the largest rectangle that can be inscribed in a semicircle of radius r.

[Sol 1]:

Let (x, y) be the vertex that lies in the first quadrant. Then the rectangle has sides of lengths $2x$ and y. So the area $A = 2xy$.

$\therefore (x, y)$ lies on the circle $x^2 + y^2 = r^2 \therefore y = \sqrt{r^2 - x^2}$

$\Rightarrow A = 2x\sqrt{r^2 - x^2} \quad 0 \leq x \leq 5$

$$A' = 2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}} = \frac{2(r^2 - 2x^2)}{\sqrt{r^2 - x^2}} \quad \text{so} \quad A'(x) = 0 \Leftrightarrow x = \frac{r}{\sqrt{2}}$$

Since $A(0) = 0$, $A(r) = 0$ and $A\left(\frac{r}{\sqrt{2}}\right) = r^2$, we conclude that $A\left(\frac{r}{\sqrt{2}}\right) = r^2$ is the absolute maximum of A.

The area of the largest inscribed rectangle is r^2.
[Sol 2]:

Let θ be the angle shown in the figure on the left. Then the area of the rectangle is

$$A(\theta) = (2r \cos \theta) \cdot r \sin \theta = r^2 \sin 2\theta.$$

We know that $\sin 2\theta$ has a maximum value of 1 and it occurs when $2\theta = \frac{\pi}{2}$. Thus, $A(\theta)$ has a maximum value of r^2 and it occur when $\theta = \frac{\pi}{4}$.
§ 4.8 (4.9) Newton’s Method (牛頓法)

To approximate a solution to the equation $f(x) = 0$, choose an initial approximation x_1, and calculate x_2, x_3, x_4, \ldots using

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \quad \text{for } n = 1, 2, 3, \ldots$$

If the numbers x_1, x_2, x_3, \ldots converge, they converge to a solution of $f(x) = 0$.
Note that x_{n+1} might be a worse approximation then x_n (such as x_3 in Fig.1) when $f''(x_n)$ is closed to 0. Then Newton’s Method fails and a better initial approximation x_1 should be chosen. (So does when the case in Fig.2 happens)

Newton’s Method also fails when $f'(x_n) = 0$ for some n.

In this case,
there is no x_3 produced.
[Ex] Use Newton’s Method to find the root to the equation $x^3 + 3x + 1 = 0$ to seven decimal places.

[Sol]:

Let $f(x) = x^3 + 3x + 1 = 0$, then $f'(x) = 3x^2 + 3$ and

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^3 + 3x_n + 1}{3x_n^2 + 3}$$

The graph of f suggests that choose $x_1 = -0.3$, then

$$x_2 = x_1 - \frac{x_1^3 + 3x_1 + 1}{3x_1^2 + 3} \approx -0.3223241$$

$$x_3 = x_2 - \frac{x_2^3 + 3x_2 + 1}{3x_2^2 + 3} \approx -0.3221853$$

$$x_4 = x_3 - \frac{x_3^3 + 3x_3 + 1}{3x_3^2 + 3} \approx -0.3221853$$

Since x_3 and x_4 agree to seven decimal places, we conclude that the root to $x^3 + 3x + 1 = 0$ is about -0.3221853.
Usually you don’t have the graph of f ready to help you decide the value of the initial approximation. In this case, you can make use of the Intermediate Value Thm: Since $f(-1) \cdot f(0) < 0$, there is a root in the interval $(-1, 0)$. Thus, you can choose $x_1 = -0.5$ to be the initial approximation. It’s also a good start.

[Ex2] Use Newton’s Method to find $\sqrt[6]{2}$ correct to eight decimal places.

[Sol]: $\sqrt[6]{2}$ is the root of the equation $x^6 - 2 = 0$.

Let $f(x) = x^6 - 2$, then $f'(x) = 6x^5$ and $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^6 - 2}{6x_n^5}$

If we choose $x_1 = 1$ as the initial approximation, then

$x_2 \approx 1.16666667$
$x_3 \approx 1.12644368$
$x_4 \approx 1.12249707$
$x_5 \approx 1.12246205$
$x_6 \approx 1.12246205$

Since x_5 and x_6 agree to eight decimal places, we conclude that $\sqrt[6]{2} \approx 1.12246205$.
[Ex3] Find, correct to six decimal places, the root of the equation $\cos x = x$.

[Sol]:

Let $f(x) = \cos x - x$, then $f'(x) = -\sin x - 1$ and

$$x_{n+1} = x_n - \frac{\cos x_n - x_n}{-\sin x_n - 1} = x_n + \frac{\cos x_n - x_n}{\sin x_n + 1}$$

If we choose $x_1 = 1$, then

- $x_2 \approx 0.750363$
- $x_3 \approx 0.739112$
- $x_4 \approx 0.739085$
- $x_5 \approx 0.739085$

Since x_4 and x_5 agree to six decimal places, we conclude that the root to this equation is about 0.739085.
§ 4.9(4.10) Antiderivatives (反導數)

Def
A function F is called an antiderivative of f on an interval I if $F''(x) = f(x)$ for all x in I.

Ex. $F(x) = \frac{1}{3}x^3$ and $G(x) = \frac{1}{3}x^3 + 5$ are both antiderivative of $f(x) = x^2$

Thm 1
If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is $F(x) + C$, where C is an arbitrary constant.

Ex. The most general antiderivative of $f(x) = x^2$ is $\frac{1}{3}x^3 + C$
[Ex1] Find the most general antiderivative of each of the following functions.

(a) \(f(x) = \sin x \)
(b) \(f(x) = \frac{1}{x} \)
(c) \(f(x) = x^n, \ n \neq -1. \)

[Sol]:

(a) \(\therefore \frac{d}{dx}(-\cos x) = \sin x \quad \therefore \text{the most general antiderivative is} \ -\cos x + C \)

(b) \(\therefore \frac{d}{dx}(\ln x) = \frac{1}{x} \text{ on } (0, \infty) \)

So on the interval \((0, \infty)\), the most general antiderivative of \(f \) is \(\ln x + C \)

Also \(\frac{d}{dx}(\ln|x|) = \frac{1}{x} \) for all \(x \neq 0 \).

\(\therefore \text{on } (-\infty, 0) \text{ and } (0, \infty) \), the most general antiderivative of \(f = \frac{1}{x} \) is \(\ln|x| + C \)

Thus, the general antiderivative of \(f \) is \(F(x) = \begin{cases}
\ln x + C & \text{if } x > 0 \\
\ln(-x) + C & \text{if } x < 0
\end{cases} \)

(c) \(\therefore \text{when } n \neq -1, \quad \frac{d}{dx}\left(\frac{1}{n+1} x^{n+1}\right) = x^n \)

\(\therefore \text{the most general antiderivative of } f(x) = x^n \text{ is } F(x) = \frac{x^{n+1}}{n+1} + C \)
<table>
<thead>
<tr>
<th>Function</th>
<th>Particular Antiderivative</th>
<th>Function</th>
<th>Particular Antiderivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c f(x)$</td>
<td>$c F(x)$</td>
<td>$\sin x$</td>
<td>$-\cos x$</td>
</tr>
<tr>
<td>$f(x) + g(x)$</td>
<td>$F(x) + G(x)$</td>
<td>$\sec^2 x$</td>
<td>$\tan x$</td>
</tr>
<tr>
<td>$x^n (n \neq -1)$</td>
<td>$\frac{1}{n+1} x^{n+1}$</td>
<td>$\sec x \tan x$</td>
<td>$\sec x$</td>
</tr>
<tr>
<td>$\frac{1}{x}$</td>
<td>$\ln</td>
<td>x</td>
<td>$</td>
</tr>
<tr>
<td>e^x</td>
<td>e^x</td>
<td>$\frac{1}{1+x^2}$</td>
<td>$\tan^{-1} x$</td>
</tr>
<tr>
<td>$\cos x$</td>
<td>$\sin x$</td>
<td>$\frac{1}{x\sqrt{x^2-1}}$</td>
<td>$\sec^{-1} x$</td>
</tr>
</tbody>
</table>
[Ex2] Find all functions g such that $g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$

[Sol]:

$$g'(x) = 4\sin x + 2x^4 - x^{-\frac{1}{2}}$$

$$\therefore g(x) = 4(-\cos x) + 2\left(\frac{1}{5}x^5\right) - \frac{1}{1 \cdot 2}x^{-\frac{1}{2}} + C = -4\cos x + \frac{2}{5}x^5 - 2x^{\frac{1}{2}} + C$$

[Ex3] Find f if $f'(x) = e^x + 20\left(1 + x^2\right)^{-1}$ and $f(0) = -2$.

[Sol]:

$$\therefore f'(x) = e^x + \frac{20}{1 + x^2}$$

$$\therefore f(x) = e^x + 20\tan^{-1} x + C$$

Since $f'(0) = -2$, we have $f(0) = e^0 + 20\tan^{-1} 0 + C = -2$

$$\Rightarrow C + 1 = -2 \quad \Rightarrow C = -3$$

So the particular solution is $f(x) = e^x + 20\tan^{-1} x - 3$
[Ex4] Find f if $f''(x) = 12x^2 + 6x - 4$, $f(0) = 4$ and $f(1) = 1$

[Sol]:

$$f'(x) = 12 \left(\frac{1}{3} x^3 \right) + 6 \left(\frac{1}{2} x^2 \right) - 4x + C = 4x^3 + 3x^2 - 4x + C$$

$$\Rightarrow f(x) = 4 \left(\frac{1}{4} x^4 \right) + 3 \left(\frac{1}{3} x^3 \right) - 4 \left(\frac{1}{2} x^2 \right) + Cx + D = x^4 + x^3 - 2x^2 + Cx + D$$

$\therefore f(0) = 4 \quad : \quad f(0) = D = 4$

$\therefore f(1) = 1 \quad : \quad f(1) = 1 + 1 - 2 + C + D = 1 \Rightarrow C + D = 1 \Rightarrow C = -3$

Thus, the required function is $f(x) = x^4 + x^3 - 2x^2 - 3x + 4$.
The graph of a function f is given below. Make a rough sketch of an antiderivative F, given $F(0) = 2$.

[Sol]:

Note that $F'(x) = f'(x)$

\[\therefore (1) \ f = F' < 0 \text{ on } (0,1) \Rightarrow F \downarrow \text{ on } (0,1) \]

\[(2) \ f = F' > 0 \text{ on } (1,3) \Rightarrow F \uparrow \text{ on } (1,3) \]

\[(3) \ f = F' < 0 \text{ on } (3,\infty) \Rightarrow F \downarrow \text{ on } (3,\infty) \]

(4) F has a local minimum at $x = 1$ (horizontal tangent)

(5) F has a local maximum at $x = 3$ (horizontal tangent)

(6) $f(x) \to 0$ as $x \to \infty \Rightarrow$ the graph of F become flatter as $x \to \infty$

Also notice that $F''(x) = f''(x)$

\[\therefore (7) \ f' = F'' > 0 \text{ on } (0,2) \Rightarrow F \text{ is CU on } (0,2) \]

\[(8) \ f' = F'' < 0 \text{ on } (2,4) \Rightarrow F \text{ is CD on } (2,4) \]

\[(9) \ f' = F'' > 0 \text{ on } (4,\infty) \Rightarrow F \text{ is CU on } (4,\infty) \]

(10) F has inflection points when $x = 2$ and $x = 4$.
[Ex6] If $f(x) = \sqrt{1 + x^3} - x$, sketch the graph of the antiderivative F that satisfies the initial condition $F(-1) = 0$.

[Sol]: You may draw the graph of f first and then use it to graph F as in Ex5. But, this time let’s create a more accurate graph by using what is called a direction field instead.

- A direction field for $f(x) = \sqrt{1 + x^3} - x$
- The slope of the line segments above $x = a$ is $f(a)$
- The graph of an antiderivative F satisfying $F(-1) = 0$ follows the direction field.
Rectilinear Motion (直線運動)

<table>
<thead>
<tr>
<th>$s(t)$</th>
<th>differentiation</th>
<th>$v(t) = s'(t)$</th>
<th>differentiation</th>
<th>$a(t) = v'(t) = s''(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>position function</td>
<td>antidifferentiation</td>
<td>velocity function</td>
<td>antidifferentiation</td>
<td>acceleration function</td>
</tr>
</tbody>
</table>

[Ex7] A particle 質點 moves in a straight line and has acceleration given by $a(t) = 6t + 4$.

It is initial velocity is $v(0) = -6 \text{ cm/s}$ and its initial displacement is $s(0) = 9 \text{ cm}$.

Find its position function $s(t)$.

[Sol]:

\[\therefore v'(t) = a(t) = 6t + 4 \quad \therefore v(t) = 3t^2 + 4t + C \]

Since $v(0) = -6$, we have $v(0) = C = -6 \quad \therefore v(t) = 3t^2 + 4t - 6$

Next, \[\therefore s'(t) = v(t) = 3t^2 + 4t - 6 \]

\[\therefore s(t) = t^3 + 2t^2 - 6t + D \]

Since $s(0) = 9$, we have $s(0) = D = 9$

Thus \[s(t) = t^3 + 2t^2 - 6t + 9 \]
[Ex8] A ball is thrown upward with a speed of 48 ft/s from the edge of a diff 432 ft above the ground. Find its height above the ground \(t \) seconds later. When does it reach its maximum height? When does it hit the ground?

[Sol]:

(1) The motion is vertical and the height above the ground at time \(t \) is its position function \(s(t) \). We choose the position direction to be upward. Since the velocity \(v(t) \) is decreasing, the acceleration must be negative.

\[
a(t) = v'(t) = -32 \quad \Rightarrow v(t) = -32t + C
\]

\[
\therefore v(0) = 48 \quad \therefore v(0) = C = 48
\]

Therefore \(v(t) = -32t + 48 \).

Since \(s'(t) = v(t) = -32t + 48 \), we have \(s(t) = -16t^2 + 48t + D \)

\[
\therefore s(0) = 432 \quad \therefore s(0) = D = 432
\]

Thus, \(s(t) = -16t^2 + 48t + 432 \).

(2) The ball reaches its maximum height \(\Leftrightarrow s'(t) = v(t) = 0 \)

\[
\Leftrightarrow -32t + 48 = 0 \quad \Leftrightarrow t = \frac{48}{32} = \frac{3}{2} \text{ (sec)}
\]
(3) The ball hit the ground $\iff s(t) = 0 \iff -16t^2 + 48t + 432 = 0$

$\iff t^2 - 3t - 27 = 0 \iff t = \frac{3 \pm 3\sqrt{13}}{2}$

We reject the solution with the minus sign since $\frac{3 - 3\sqrt{13}}{2} < 0$

Therefore, the ball hits the ground after $\frac{3 + 3\sqrt{13}}{2} \approx 6.9$ sec